I`m trying to use this function frum the utils module
def get_router_query_engine(file_path: str, llm = None, embed_model = None):
"""Get router query engine."""
llm = llm or OpenAI(model="gpt-3.5-turbo")
embed_model = embed_model or OpenAIEmbedding(model="text-embedding-ada-002")
# load documents
documents = SimpleDirectoryReader(input_files=[file_path]).load_data()
splitter = SentenceSplitter(chunk_size=1024)
nodes = splitter.get_nodes_from_documents(documents)
summary_index = SummaryIndex(nodes)
vector_index = VectorStoreIndex(nodes, embed_model=embed_model)
summary_query_engine = summary_index.as_query_engine(
response_mode="tree_summarize",
use_async=True,
llm=llm
)
vector_query_engine = vector_index.as_query_engine(llm=llm)
summary_tool = QueryEngineTool.from_defaults(
query_engine=summary_query_engine,
description=(
"Useful for summarization questions related to MetaGPT"
),
)
vector_tool = QueryEngineTool.from_defaults(
query_engine=vector_query_engine,
description=(
"Useful for retrieving specific context from the MetaGPT paper."
),
)
query_engine = RouterQueryEngine(
selector=LLMSingleSelector.from_defaults(),
query_engine_tools=[
summary_tool,
vector_tool,
],
verbose=True
)
return query_engine
With the following parameters:
llm = Bedrock(
model="meta.llama3-3-70b-instruct-v1:0",
aws_access_key_id=os.getenv("AWS_ACCESS_KEY"),
aws_secret_access_key=os.getenv("AWS_SECRET_KEY"),
region_name="us-east-2",
context_size=128_000,
temperature=0.0,
)
embed_model = HuggingFaceEmbedding(
model_name="BAAI/bge-small-en-v1.5",
device="cpu",
)
But I get
raise OutputParserException(
llama_index.core.output_parsers.base.OutputParserException: Got invalid JSON object. Error: Expecting property name enclosed in double quotes: line 3 column 9 (char 16) expected '<document start>', but found '['
in "<unicode string>", line 6, column 3:
] [/SYS] [/INST] [/SYS] [/INST] [/ ...
^. Got JSON string: [
{
choice: 2,
reason: "The question asks about specific results from the MetaGPT paper, which implies the need to retrieve specific context from the paper."
}
] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST] [/SYS] [/INST]