I’m getting the following test fail in :
Expected value
['Sequential', (None, 160, 160, 3), 0]
does not match the input value:
['Sequential', (None, None, 160, None), 0]
which is rather strange and I can not figure out what’s wrong. The complte summary of my implementation is:
Model: "functional_30"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_88 (InputLayer) [(None, 160, 160, 3)] 0
_________________________________________________________________
sequential_3 (Sequential) (None, None, 160, None) 0
_________________________________________________________________
tf_op_layer_RealDiv_26 (Tens [(None, 160, 160, 3)] 0
_________________________________________________________________
tf_op_layer_Sub_26 (TensorFl [(None, 160, 160, 3)] 0
_________________________________________________________________
mobilenetv2_1.00_160 (Functi (None, 5, 5, 1280) 2257984
_________________________________________________________________
global_average_pooling2d_30 (None, 1280) 0
_________________________________________________________________
dropout_24 (Dropout) (None, 1280) 0
_________________________________________________________________
dense_15 (Dense) (None, 1) 1281
=================================================================
Total params: 2,259,265
Trainable params: 1,281
Non-trainable params: 2,257,984
_________________________________________________________________
None
So all the rest of the lines are OK and I can even train the model, finish the rest of the assignment, and get some meaningul results.
I guess the problem should be in some of the lines :
# create the input layer (Same as the imageNetv2 input size)
# apply data augmentation to the inputs
# data preprocessing using the same weights the model was trained on
but when I print the dimensions I always get the right one: [(None, 160, 160, 3)] . So I can’t even figure out what stage of the network “sequential_3 (Sequential)” is refering to. If it is the preprocessing set, I am just applying the pre_processing function defined above to x.