Buenas, me pasa con el test de ALPACA_MODEL (Cell 16)
En el Summary del modelo obtengo la lista de Layers que no se corresponden con el test.
Model: “functional_1”
Layer (type) Output Shape Param
input_23 (InputLayer) [(None, 160, 160, 3)] 0
mobilenetv2_1.00_160 (Functi (None, 5, 5, 1280) 2257984
global_average_pooling2d_3 ( (None, 1280) 0
dropout_2 (Dropout) (None, 1280) 0
dense_2 (Dense) (None, 1) 1281
Total params: 2,259,265
Trainable params: 1,281
Non-trainable params: 2,257,984
Y el TEST busca
( [‘Sequential’, (None, 160, 160, 3), 0],
[‘TensorFlowOpLayer’, [(None, 160, 160, 3)], 0],
[‘TensorFlowOpLayer’, [(None, 160, 160, 3)], 0],)
alpaca_summary = [[‘InputLayer’, [(None, 160, 160, 3)], 0],
[‘Sequential’, (None, 160, 160, 3), 0],
[‘TensorFlowOpLayer’, [(None, 160, 160, 3)], 0],
[‘TensorFlowOpLayer’, [(None, 160, 160, 3)], 0],
[‘Functional’, (None, 5, 5, 1280), 2257984],
[‘GlobalAveragePooling2D’, (None, 1280), 0],
[‘Dropout’, (None, 1280), 0, 0.2],
[‘Dense’, (None, 1), 1281, ‘linear’]] #linear is the default activation
Las dimensiones me parecen correctas, pero no entiendo porque tendriamso esas capas si lo que agregamos es GlobalAveragePooling2D, Droopout y Dense
Me peuden ayuda a entender ?
Saludos.