An error occur when exec M2_UGL_1

Error occur when exec the last code block to put the full workflow into action.

ypeError                                 Traceback (most recent call last)
Cell In[18], line 8
      5 image_basename="drink_sales"
      7 # Run the complete agentic workflow
----> 8 _ = run_workflow(
      9     dataset_path="coffee_sales.csv",
     10     user_instructions=user_instructions,
     11     generation_model=generation_model,
     12     reflection_model=reflection_model,
     13     image_basename=image_basename
     14 )

Cell In[15], line 41, in run_workflow(dataset_path, user_instructions, generation_model, reflection_model, image_basename)
     39     initial_code = match.group(1).strip()
     40     exec_globals = {"df": df}
---> 41     exec(initial_code, exec_globals)
     42 utils.print_html(out_v1, is_image=True, title="Generated Chart (V1)")
     44 # 3) Reflect on V1 (image + original code) to get feedback and refined code (V2)

File <string>:8

File /usr/local/lib/python3.11/site-packages/pandas/core/groupby/groupby.py:3153, in GroupBy.sum(self, numeric_only, min_count, engine, engine_kwargs)
   3148 else:
   3149     # If we are grouping on categoricals we want unobserved categories to
   3150     # return zero, rather than the default of NaN which the reindexing in
   3151     # _agg_general() returns. GH #31422
   3152     with com.temp_setattr(self, "observed", True):
-> 3153         result = self._agg_general(
   3154             numeric_only=numeric_only,
   3155             min_count=min_count,
   3156             alias="sum",
   3157             npfunc=np.sum,
   3158         )
   3160     return self._reindex_output(result, fill_value=0, method="sum")

File /usr/local/lib/python3.11/site-packages/pandas/core/groupby/groupby.py:1908, in GroupBy._agg_general(self, numeric_only, min_count, alias, npfunc, **kwargs)
   1898 @final
   1899 def _agg_general(
   1900     self,
   (...)
   1906     **kwargs,
   1907 ):
-> 1908     result = self._cython_agg_general(
   1909         how=alias,
   1910         alt=npfunc,
   1911         numeric_only=numeric_only,
   1912         min_count=min_count,
   1913         **kwargs,
   1914     )
   1915     return result.__finalize__(self.obj, method="groupby")

File /usr/local/lib/python3.11/site-packages/pandas/core/groupby/groupby.py:2005, in GroupBy._cython_agg_general(self, how, alt, numeric_only, min_count, **kwargs)
   2002     result = self._agg_py_fallback(how, values, ndim=data.ndim, alt=alt)
   2003     return result
-> 2005 new_mgr = data.grouped_reduce(array_func)
   2006 res = self._wrap_agged_manager(new_mgr)
   2007 if how in ["idxmin", "idxmax"]:

File /usr/local/lib/python3.11/site-packages/pandas/core/internals/managers.py:1491, in BlockManager.grouped_reduce(self, func)
   1489             result_blocks = extend_blocks(applied, result_blocks)
   1490     else:
-> 1491         applied = blk.apply(func)
   1492         result_blocks = extend_blocks(applied, result_blocks)
   1494 if len(result_blocks) == 0:

File /usr/local/lib/python3.11/site-packages/pandas/core/internals/blocks.py:395, in Block.apply(self, func, **kwargs)
    389 @final
    390 def apply(self, func, **kwargs) -> list[Block]:
    391     """
    392     apply the function to my values; return a block if we are not
    393     one
    394     """
--> 395     result = func(self.values, **kwargs)
    397     result = maybe_coerce_values(result)
    398     return self._split_op_result(result)

File /usr/local/lib/python3.11/site-packages/pandas/core/groupby/groupby.py:1980, in GroupBy._cython_agg_general.<locals>.array_func(values)
   1978 def array_func(values: ArrayLike) -> ArrayLike:
   1979     try:
-> 1980         result = self._grouper._cython_operation(
   1981             "aggregate",
   1982             values,
   1983             how,
   1984             axis=data.ndim - 1,
   1985             min_count=min_count,
   1986             **kwargs,
   1987         )
   1988     except NotImplementedError:
   1989         # generally if we have numeric_only=False
   1990         # and non-applicable functions
   1991         # try to python agg
   1992         # TODO: shouldn't min_count matter?
   1993         # TODO: avoid special casing SparseArray here
   1994         if how in ["any", "all"] and isinstance(values, SparseArray):

File /usr/local/lib/python3.11/site-packages/pandas/core/groupby/ops.py:840, in BaseGrouper._cython_operation(self, kind, values, how, axis, min_count, **kwargs)
    838 ids, _, _ = self.group_info
    839 ngroups = self.ngroups
--> 840 return cy_op.cython_operation(
    841     values=values,
    842     axis=axis,
    843     min_count=min_count,
    844     comp_ids=ids,
    845     ngroups=ngroups,
    846     **kwargs,
    847 )

File /usr/local/lib/python3.11/site-packages/pandas/core/groupby/ops.py:550, in WrappedCythonOp.cython_operation(self, values, axis, min_count, comp_ids, ngroups, **kwargs)
    546 self._validate_axis(axis, values)
    548 if not isinstance(values, np.ndarray):
    549     # i.e. ExtensionArray
--> 550     return values._groupby_op(
    551         how=self.how,
    552         has_dropped_na=self.has_dropped_na,
    553         min_count=min_count,
    554         ngroups=ngroups,
    555         ids=comp_ids,
    556         **kwargs,
    557     )
    559 return self._cython_op_ndim_compat(
    560     values,
    561     min_count=min_count,
   (...)
    565     **kwargs,
    566 )

File /usr/local/lib/python3.11/site-packages/pandas/core/arrays/datetimelike.py:1694, in DatetimeLikeArrayMixin._groupby_op(self, how, has_dropped_na, min_count, ngroups, ids, **kwargs)
   1691 if dtype.kind == "M":
   1692     # Adding/multiplying datetimes is not valid
   1693     if how in ["sum", "prod", "cumsum", "cumprod", "var", "skew"]:
-> 1694         raise TypeError(f"datetime64 type does not support {how} operations")
   1695     if how in ["any", "all"]:
   1696         # GH#34479
   1697         warnings.warn(
   1698             f"'{how}' with datetime64 dtypes is deprecated and will raise in a "
   1699             f"future version. Use (obj != pd.Timestamp(0)).{how}() instead.",
   1700             FutureWarning,
   1701             stacklevel=find_stack_level(),
   1702         )

TypeError: datetime64 type does not support sum operations

hi @henryli_ok

please follow this thread for updates on resolution from staff while developers are looking into the issue

Thank you for reporting this

Deepti