Art _Generation with Neural Style Transfer

Help me to find the error in the code

START CODE HERE

    #(1 line)
    a_G = a_S
    
    # Compute the style cost
    #(1 line)
    J_style = compute_style_cost(a_S, a_G)

    #(2 lines)
    # Compute the content cost
    J_content = compute_content_cost(a_S, a_G)
    # Compute the total cost
    J = total_cost(J_content, J_style, alpha = 10, beta = 40) 
    
    ### END CODE HERE

ValueError Traceback (most recent call last)
in
2 generated_image = tf.Variable(tf.image.convert_image_dtype(content_image, tf.float32))
3
----> 4 J1 = train_step(generated_image)
5 print(J1)
6 assert type(J1) == EagerTensor, f"Wrong type {type(J1)} != {EagerTensor}"

/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in call(self, *args, **kwds)
778 else:
779 compiler = “nonXla”
→ 780 result = self._call(*args, **kwds)
781
782 new_tracing_count = self._get_tracing_count()

/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds)
821 # This is the first call of call, so we have to initialize.
822 initializers =
→ 823 self._initialize(args, kwds, add_initializers_to=initializers)
824 finally:
825 # At this point we know that the initialization is complete (or less

/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in _initialize(self, args, kwds, add_initializers_to)
695 self._concrete_stateful_fn = (
696 self._stateful_fn._get_concrete_function_internal_garbage_collected( # pylint: disable=protected-access
→ 697 *args, **kwds))
698
699 def invalid_creator_scope(*unused_args, **unused_kwds):

/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs)
2853 args, kwargs = None, None
2854 with self._lock:
→ 2855 graph_function, _, _ = self._maybe_define_function(args, kwargs)
2856 return graph_function
2857

/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py in _maybe_define_function(self, args, kwargs)
3211
3212 self._function_cache.missed.add(call_context_key)
→ 3213 graph_function = self._create_graph_function(args, kwargs)
3214 self._function_cache.primary[cache_key] = graph_function
3215 return graph_function, args, kwargs

/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
3073 arg_names=arg_names,
3074 override_flat_arg_shapes=override_flat_arg_shapes,
→ 3075 capture_by_value=self._capture_by_value),
3076 self._function_attributes,
3077 function_spec=self.function_spec,

/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
984 _, original_func = tf_decorator.unwrap(python_func)
985
→ 986 func_outputs = python_func(*func_args, **func_kwargs)
987
988 # invariant: func_outputs contains only Tensors, CompositeTensors,

/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in wrapped_fn(*args, **kwds)
598 # wrapped allows AutoGraph to swap in a converted function. We give
599 # the function a weak reference to itself to avoid a reference cycle.
→ 600 return weak_wrapped_fn().wrapped(*args, **kwds)
601 weak_wrapped_fn = weakref.ref(wrapped_fn)
602

/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs)
971 except Exception as e: # pylint:disable=broad-except
972 if hasattr(e, “ag_error_metadata”):
→ 973 raise e.ag_error_metadata.to_exception(e)
974 else:
975 raise

ValueError: in user code:

<ipython-input-36-863a982eb8b0>:31 train_step  *
    optimizer.apply_gradients([(grad, generated_image)])
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/optimizer_v2/optimizer_v2.py:513 apply_gradients  **
    grads_and_vars = _filter_grads(grads_and_vars)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/optimizer_v2/optimizer_v2.py:1271 _filter_grads
    ([v.name for _, v in grads_and_vars],))

ValueError: No gradients provided for any variable: ['Variable:0'].

That is not correct.
Please read the instruction comment two lines above:
# Compute a_G as the vgg_model_outputs for the current generated image