Hi, I am facing a error in The Planar Data Classification assignment of week 3 of Neural networks and Deep Learning. So, in the nn_model function I am calling all the functions correctly and with right parameters and the test cases of above functions have passed successfully, still whenever I am running nn_model_test(nn_model)
Wrong Weight value error.
Failing output:
Cost after iteration 0: 0.693395
Cost after iteration 1000: 0.000217
Cost after iteration 2000: 0.000107
Cost after iteration 3000: 0.000071
Cost after iteration 4000: 0.000053
Cost after iteration 5000: 0.000042
Cost after iteration 6000: 0.000035
Cost after iteration 7000: 0.000030
Cost after iteration 8000: 0.000026
Cost after iteration 9000: 0.000024
W1 = [[-0.73679287 -1.36621711]
[-0.62039407 -1.13347599]
[-0.71454509 -1.31939197]
[ 0.74580119 1.37837548]]
b1 = [[ 0.01230887]
[-0.00176212]
[ 0.00896606]
[-0.01164917]]
W2 = [[-3.04892822 -2.13993848 -2.84526122 3.11015916]]
b2 = [[0.0041659]]
AssertionError Traceback (most recent call last)
in
----> 1 nn_model_test(nn_model)
~/work/release/W3A1/public_tests.py in nn_model_test(target)
292 assert output[“b2”].shape == expected_output[“b2”].shape, f"Wrong shape for b2."
293
→ 294 assert np.allclose(output[“W1”], expected_output[“W1”]), “Wrong values for W1”
295 assert np.allclose(output[“b1”], expected_output[“b1”]), “Wrong values for b1”
296 assert np.allclose(output[“W2”], expected_output[“W2”]), “Wrong values for W2”
AssertionError: Wrong values for W1