My output for model summary (last few lines):
batch_normalization_93 (BatchN (None, 3, 3, 192) 576 ['conv2d_93[0][0]']
ormalization)
activation_85 (Activation) (None, 3, 3, 320) 0 ['batch_normalization_85[0][0]']
mixed9_1 (Concatenate) (None, 3, 3, 768) 0 ['activation_87[0][0]',
'activation_88[0][0]']
concatenate_1 (Concatenate) (None, 3, 3, 768) 0 ['activation_91[0][0]',
'activation_92[0][0]']
activation_93 (Activation) (None, 3, 3, 192) 0 ['batch_normalization_93[0][0]']
mixed10 (Concatenate) (None, 3, 3, 2048) 0 ['activation_85[0][0]',
'mixed9_1[0][0]',
'concatenate_1[0][0]',
'activation_93[0][0]']
==================================================================================================
Total params: 21,802,784
Trainable params: 0
Non-trainable params: 21,802,784
Expected output:
batch_normalization_v1_281 (Bat (None, 3, 3, 192) 576 conv2d_281[0][0]
__________________________________________________________________________________________________
activation_273 (Activation) (None, 3, 3, 320) 0 batch_normalization_v1_273[0][0]
__________________________________________________________________________________________________
mixed9_1 (Concatenate) (None, 3, 3, 768) 0 activation_275[0][0]
activation_276[0][0]
__________________________________________________________________________________________________
concatenate_5 (Concatenate) (None, 3, 3, 768) 0 activation_279[0][0]
activation_280[0][0]
__________________________________________________________________________________________________
activation_281 (Activation) (None, 3, 3, 192) 0 batch_normalization_v1_281[0][0]
__________________________________________________________________________________________________
mixed10 (Concatenate) (None, 3, 3, 2048) 0 activation_273[0][0]
mixed9_1[0][0]
concatenate_5[0][0]
activation_281[0][0]
==================================================================================================
Total params: 21,802,784
Trainable params: 0
Non-trainable params: 21,802,784
Does this difference matter? (e.g “batch_normalization_93” and “batch_normalization_v1_281” seem to be the same layer but have different names) What causes this difference?