C3_W1 Practice Lab, Generate Data for Breed Function

def generate_data_for_breed(breed, features, n_samples, params):
“”"
Generate synthetic data for a specific breed of dogs based on given features and parameters.

Parameters:
    - breed (str): The breed of the dog for which data is generated.
    - features (list[str]): List of features to generate data for (e.g., "height", "weight", "bark_days", "ear_head_ratio").
    - n_samples (int): Number of samples to generate for each feature.
    - params (dict): Dictionary containing parameters for each breed and its features.

Returns:
    - df (pandas.DataFrame): A DataFrame containing the generated synthetic data.
        The DataFrame will have columns for each feature and an additional column for the breed.
"""

df = pd.DataFrame()

for feature in features:
    match feature:
        case "height" | "weight":
            df[feature] = gaussian_generator(params[breed][feature].mu, params[breed][feature].sigma, n_samples)
            
        case "bark_days":
            df[feature] = binomial_generator(params[breed][feature].n, params[breed][feature].p, n_samples)
                                   
        case "ear_head_ratio":
            df[feature] = uniform_generator(params[breed][feature].a, params[breed][feature].b, n_samples)    

df["breed"] = breed

return df

Generate data for each breed

df_0 = generate_data_for_breed(breed=0, features=FEATURES, n_samples=1200, params=breed_params)
df_1 = generate_data_for_breed(breed=1, features=FEATURES, n_samples=1350, params=breed_params)
df_2 = generate_data_for_breed(breed=2, features=FEATURES, n_samples=900, params=breed_params)

Concatenate all breeds into a single dataframe

df_all_breeds = pd.concat([df_0, df_1, df_2]).reset_index(drop=True)

Shuffle the data

df_all_breeds = df_all_breeds.sample(frac = 1)

Print the dataframe

df_all_breeds.head(10)

The code above (that is already provided), gives me a:

ValueError: Length of values (1) does not match length of index (1200).

I am not sure what is going on, I would appreciate some help!

Nevermind, I resolved the issue!

(The code for my uniform generator was faulty).