This is the error (and the rest of the error is included at the end of this post).
I ran the first four graded functions through the grader successfully.
The fifth graded function passed all tests, but the grader failed all the tests, showing this error on the first function:
The rest of error printout:
File /usr/local/lib/python3.8/dist-packages/keras/src/utils/traceback_utils.py:70, in filter_traceback..error_handler(*args, **kwargs)
67 filtered_tb = _process_traceback_frames(e.traceback)
68 # To get the full stack trace, call:
69 # tf.debugging.disable_traceback_filtering()
—> 70 raise e.with_traceback(filtered_tb) from None
71 finally:
72 del filtered_tb
File /tmp/autograph_generated_file_jtloxyg.py:15, in outer_factory..inner_factory..tf__train_function(iterator)
13 try:
14 do_return = True
—> 15 retval = ag_.converted_call(ag__.ld(step_function), (ag__.ld(self), ag__.ld(iterator)), None, fscope)
16 except:
17 do_return = False
ValueError: in user code:
File "/usr/local/lib/python3.8/dist-packages/keras/src/engine/training.py", line 1338, in train_function *
return step_function(self, iterator)
File "/usr/local/lib/python3.8/dist-packages/keras/src/engine/training.py", line 1322, in step_function **
outputs = model.distribute_strategy.run(run_step, args=(data,))
File "/usr/local/lib/python3.8/dist-packages/keras/src/engine/training.py", line 1303, in run_step **
outputs = model.train_step(data)
File "/usr/local/lib/python3.8/dist-packages/keras/src/engine/training.py", line 1085, in train_step
return self.compute_metrics(x, y, y_pred, sample_weight)
File "/usr/local/lib/python3.8/dist-packages/keras/src/engine/training.py", line 1179, in compute_metrics
self.compiled_metrics.update_state(y, y_pred, sample_weight)
File "/usr/local/lib/python3.8/dist-packages/keras/src/engine/compile_utils.py", line 605, in update_state
metric_obj.update_state(y_t, y_p, sample_weight=mask)
File "/usr/local/lib/python3.8/dist-packages/keras/src/utils/metrics_utils.py", line 77, in decorated
update_op = update_state_fn(*args, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/keras/src/metrics/base_metric.py", line 140, in update_state_fn
return ag_update_state(*args, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/keras/src/metrics/base_metric.py", line 728, in update_state **
return super().update_state(matches, sample_weight=sample_weight)
File "/usr/local/lib/python3.8/dist-packages/keras/src/metrics/base_metric.py", line 504, in update_state
) = losses_utils.squeeze_or_expand_dimensions(
File "/usr/local/lib/python3.8/dist-packages/keras/src/utils/losses_utils.py", line 224, in squeeze_or_expand_dimensions
sample_weight = tf.squeeze(sample_weight, [-1])
ValueError: Can not squeeze dim[1], expected a dimension of 1, got 104 for '{{node Squeeze}} = Squeeze[T=DT_FLOAT, squeeze_dims=[-1]](Cast_7)' with input shapes: [?,104].