Yes, okey, this is my code:
input_img = tf.keras.Input(shape=input_shape)
YOUR CODE STARTS HERE
Moderator Edit: Solution Code Removed.
YOUR CODE ENDS HERE
And the full error message is:
ValueError Traceback (most recent call last)
in
----> 1 conv_model = convolutional_model((64, 64, 3))
2 conv_model.compile(optimizer=‘adam’,
3 loss=‘categorical_crossentropy’,
4 metrics=[‘accuracy’])
5 conv_model.summary()
in convolutional_model(input_shape)
38 Z1 = tfl.Conv2D(filters=8, kernel_size=4, strides=(1,1), padding=‘same’)(input_img),
39 A1 = tfl.ReLU()(Z1),
—> 40 P1 = tfl.MaxPooling2D(pool_size=(8,8), strides=(8,8), padding=‘same’)(A1),
41 Z2 = tfl.Conv2D(filters=16, kernel_size=2, strides=(1,1), padding=‘same’)(P1),
42 A2 = tfl.ReLU()(Z2),
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/base_layer.py in call(self, *args, **kwargs)
924 if _in_functional_construction_mode(self, inputs, args, kwargs, input_list):
925 return self._functional_construction_call(inputs, args, kwargs,
→ 926 input_list)
927
928 # Maintains info about the Layer.call
stack.
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/base_layer.py in _functional_construction_call(self, inputs, args, kwargs, input_list)
1090 # TODO(reedwm): We should assert input compatibility after the inputs
1091 # are casted, not before.
→ 1092 input_spec.assert_input_compatibility(self.input_spec, inputs, self.name)
1093 graph = backend.get_graph()
1094 # Use self._name_scope()
to avoid auto-incrementing the name.
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/input_spec.py in assert_input_compatibility(input_spec, inputs, layer_name)
178 ‘expected ndim=’ + str(spec.ndim) + ‘, found ndim=’ +
179 str(ndim) + '. Full shape received: ’ +
→ 180 str(x.shape.as_list()))
181 if spec.max_ndim is not None:
182 ndim = x.shape.ndims
ValueError: Input 0 of layer max_pooling2d_8 is incompatible with the layer: expected ndim=4, found ndim=5. Full shape received: [1, None, 64, 64, 8]