I’m stuck. Can’t find the problem. I’m applying the mask and -1e9 when computing the scaled_attention_logits. I don’t understand why it is += instead of multiplication. Keep getting the following error.
I’m using tf.nn.softmax to compute attention_weights on the scaled_attention_logits, axis = 1.
AssertionError Traceback (most recent call last)
in
1 # UNIT TEST
----> 2 scaled_dot_product_attention_test(scaled_dot_product_attention)
~/work/W4A1/public_tests.py in scaled_dot_product_attention_test(target)
73 assert np.allclose(weights, [[0.30719590187072754, 0.5064803957939148, 0.0, 0.18632373213768005],
74 [0.3836517333984375, 0.3836517333984375, 0.0, 0.2326965481042862],
—> 75 [0.3836517333984375, 0.3836517333984375, 0.0, 0.2326965481042862]]), “Wrong masked weights”
76 assert np.allclose(attention, [[0.6928040981292725, 0.18632373213768005],
77 [0.6163482666015625, 0.2326965481042862],
AssertionError: Wrong masked weights