# UNQ_C2
# GRADED FUNCTION
def alpaca_model(image_shape=IMG_SIZE, data_augmentation=data_augmenter()):
''' Define a tf.keras model for binary classification out of the MobileNetV2 model
Arguments:
image_shape -- Image width and height
data_augmentation -- data augmentation function
Returns:
Returns:
tf.keras.model
'''
input_shape = image_shape + (3,)
### START CODE HERE
# mentor edit: code removed
### END CODE HERE
model = tf.keras.Model(inputs, outputs)
return model
in that function why we didn’t use the sigmoid activation function for the last dense layer??