When coding the function for training:
def train_step(generated_image):
I get the generated_image layer values as:
a_G = vgg_model_outputs(generated_image)
Yet, when I run the test in the immediate next cell, I get:
AttributeError: in user code:
File "<ipython-input-32-25b291707c26>", line 24, in train_step *
J_style = compute_layer_style_cost(a_S, a_G)
File "<ipython-input-10-a4b70eac8075>", line 16, in compute_layer_style_cost *
m, n_H, n_W, n_C = a_G.get_shape().as_list()
AttributeError: 'list' object has no attribute 'get_shape'
Printing the a_G gives the following output:
[<tf.Tensor 'model/block1_conv1/Relu:0' shape=(1, 400, 400, 64) dtype=float32>, <tf.Tensor 'model/block2_conv1/Relu:0' shape=(1, 200, 200, 128) dtype=float32>, <tf.Tensor 'model/block3_conv1/Relu:0' shape=(1, 100, 100, 256) dtype=float32>, <tf.Tensor 'model/block4_conv1/Relu:0' shape=(1, 50, 50, 512) dtype=float32>, <tf.Tensor 'model/block5_conv1/Relu:0' shape=(1, 25, 25, 512) dtype=float32>, <tf.Tensor 'model/block5_conv4/Relu:0' shape=(1, 25, 25, 512) dtype=float32>]
But I’m not able to select the layer of interest (block5_conv4).
How I do that?