Hi,
I’m getting the following error. Not able to debug.
Test failed
Expected value
['InputLayer', [(None, 4)], 0]
does not match the input value:
['InputLayer', [(None, 10)], 0]
---------------------------------------------------------------------------
AssertionError Traceback (most recent call last)
<ipython-input-28-6d1e00d1aa10> in <module>
22
23
---> 24 Emojify_V2_test(Emojify_V2)
<ipython-input-28-6d1e00d1aa10> in Emojify_V2_test(target)
19
20 expectedModel = [['InputLayer', [(None, 4)], 0], ['Embedding', (None, 4, 2), 30], ['LSTM', (None, 4, 128), 67072, (None, 4, 2), 'tanh', True], ['Dropout', (None, 4, 128), 0, 0.5], ['LSTM', (None, 128), 131584, (None, 4, 128), 'tanh', False], ['Dropout', (None, 128), 0, 0.5], ['Dense', (None, 5), 645, 'linear'], ['Activation', (None, 5), 0]]
---> 21 comparator(summary(model), expectedModel)
22
23
~/work/W2A2/test_utils.py in comparator(learner, instructor)
21 "\n\n does not match the input value: \n\n",
22 colored(f"{a}", "red"))
---> 23 raise AssertionError("Error in test")
24 print(colored("All tests passed!", "green"))
25
AssertionError: Error in test
And I looked at the model.summary()
model = Emojify_V2((maxLen,), word_to_vec_map, word_to_index)
model.summary()
It appeared correct
Model: "functional_5"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_3 (InputLayer) [(None, 10)] 0
_________________________________________________________________
embedding_4 (Embedding) (None, 10, 50) 20000050
_________________________________________________________________
lstm_4 (LSTM) (None, 10, 128) 91648
_________________________________________________________________
dropout_4 (Dropout) (None, 10, 128) 0
_________________________________________________________________
lstm_5 (LSTM) (None, 128) 131584
_________________________________________________________________
dropout_5 (Dropout) (None, 128) 0
_________________________________________________________________
dense_2 (Dense) (None, 5) 645
_________________________________________________________________
activation_2 (Activation) (None, 5) 0
=================================================================
Total params: 20,223,927
Trainable params: 223,877
Non-trainable params: 20,000,050
I’m quite confused what’s going on here. Can anyone help out?
Another question - why do the layers start with input_3
under model summary? Shouldn’t it start with layer 1 and increment gradually?
Thanks
Huan