I have a weird behaviour that I have seen with notebooks that I download from Coursera labs to run on my local PC (Conda Jupyter) environment.
Basically the notebook opens fine on my local machine. However, if I click in a cell to try and execute it, the cell just turns blank! There is nothing there. I can close and reopen the notebook - same behaviour. The weird thing is that it only happens with some notebooks, not all.
Any ideas?
Ok, I think I can answer my own question in case somebody runs into this issue.
Anaconda navigator v2.6.0 does not have a tile to install Jupyterlab (it used in older versions). Instead you can install Anaconda Toolbox which installs a version of Jupyterlab (v3.6.X). That version creates this weird behaviour.
I installed Jupyter v4.2.0 via Conda-forge and I can confirm that the notebooks now load and run fine.
How to use DeepLearning.ai Jupyter lab notebook locally with Anaconda
2025-04-17T18:30:00Z
There are many threads in this site related to same , and I found some pretty hard to install in my system , some works some don’t .
But with latest version of everything you can run the notebook easily so
You
need Anaconda LTS to be installed , you can find steps for installation it from anywhere in internet , easy task. It is about 5GB , so you should have enough space in C Drive…
Need to set up Conda-forge channel using anaconda-prompt
A brief introduction | conda-forge | community-driven packaging for conda follow the steps from this site
create a conda virtual environment with latest python version
conda create --myenv // as per you suitable name which is saved at registered dir
if want to create in a specific dir
conda create --prefix ./envs
Activation command : conda activate myenv
if it is in default registered dir or conda activate "full\path\to\env\dir"
Use conda env list
command to check if you correctly set up the env or not
follow the site for more ``
after activation install ipympl using conda install -c conda-forge ipympl
Also install jupyterlab and its corresponding (necessary step)
conda install --channel=conda-forge jupyterlab jupyterlab-favorites jupyterlab-system-monitor nb_conda_kernels``` step run ```jupyter nbextension enable --py --sys-prefix ipympl
so in this all process numpy , matplotlib are installed
for precaution purpose runjupyter nbextension enable --py --sys-prefix ipympl
At the end run jupyter lab
so it may open at localhost:8888 and you can run all Course 1 optional Lab ipynb files
Here is a list of packages solved some problems of interactive matplotlib and other
Conda Environment Packages
Name
Version
Build
Channel
_openmp_mutex
4.5
2_gnu
conda-forge
anyio
4.9.0
pyh29332c3_0
conda-forge
argon2-cffi
23.1.0
pyhd8ed1ab_1
conda-forge
argon2-cffi-bindings
21.2.0
py313ha7868ed_5
conda-forge
arrow
1.3.0
pyhd8ed1ab_1
conda-forge
asttokens
3.0.0
pyhd8ed1ab_1
conda-forge
attrs
25.3.0
pyh71513ae_0
conda-forge
babel
2.17.0
pyhd8ed1ab_0
conda-forge
beautifulsoup4
4.13.4
pyha770c72_0
conda-forge
bleach
6.2.0
pyh29332c3_4
conda-forge
bleach-with-css
6.2.0
h82add2a_4
conda-forge
brotli
1.1.0
h2466b09_2
conda-forge
brotli-bin
1.1.0
h2466b09_2
conda-forge
brotli-python
1.1.0
py313h5813708_2
conda-forge
bzip2
1.0.8
h2466b09_7
conda-forge
ca-certificates
2025.1.31
h56e8100_0
conda-forge
cached-property
1.5.2
hd8ed1ab_1
conda-forge
cached_property
1.5.2
pyha770c72_1
conda-forge
certifi
2025.1.31
pyhd8ed1ab_0
conda-forge
cffi
1.17.1
py313ha7868ed_0
conda-forge
charset-normalizer
3.4.1
pyhd8ed1ab_0
conda-forge
colorama
0.4.6
pyhd8ed1ab_1
conda-forge
comm
0.2.2
pyhd8ed1ab_1
conda-forge
contourpy
1.3.2
py313h1ec8472_0
conda-forge
cpython
3.13.3
py313hd8ed1ab_101
conda-forge
cycler
0.12.1
pyhd8ed1ab_1
conda-forge
debugpy
1.8.14
py313h5813708_0
conda-forge
decorator
5.2.1
pyhd8ed1ab_0
conda-forge
defusedxml
0.7.1
pyhd8ed1ab_0
conda-forge
entrypoints
0.4
pyhd8ed1ab_1
conda-forge
exceptiongroup
1.2.2
pyhd8ed1ab_1
conda-forge
executing
2.1.0
pyhd8ed1ab_1
conda-forge
fonttools
4.57.0
py313hb4c8b1a_0
conda-forge
fqdn
1.5.1
pyhd8ed1ab_1
conda-forge
freetype
2.13.3
h0b5ce68_0
conda-forge
h2
4.2.0
pyhd8ed1ab_0
conda-forge
hpack
4.1.0
pyhd8ed1ab_0
conda-forge
hyperframe
6.1.0
pyhd8ed1ab_0
conda-forge
idna
3.10
pyhd8ed1ab_1
conda-forge
importlib-metadata
8.6.1
pyha770c72_0
conda-forge
importlib_resources
6.5.2
pyhd8ed1ab_0
conda-forge
intel-openmp
2024.2.1
h57928b3_1083
conda-forge
ipykernel
6.29.5
pyh4bbf305_0
conda-forge
ipympl
0.9.7
pyhd8ed1ab_1
conda-forge
ipython
9.1.0
pyhca29cf9_0
conda-forge
ipython_genutils
0.2.0
pyhd8ed1ab_2
conda-forge
ipython_pygments_lexers
1.1.1
pyhd8ed1ab_0
conda-forge
ipywidgets
8.1.6
pyhd8ed1ab_0
conda-forge
isoduration
20.11.0
pyhd8ed1ab_1
conda-forge
jedi
0.19.2
pyhd8ed1ab_1
conda-forge
jinja2
3.1.6
pyhd8ed1ab_0
conda-forge
json5
0.12.0
pyhd8ed1ab_0
conda-forge
jsonpointer
3.0.0
py313hfa70ccb_1
conda-forge
jsonschema
4.23.0
pyhd8ed1ab_1
conda-forge
jsonschema-specifications
2024.10.1
pyhd8ed1ab_1
conda-forge
jsonschema-with-format-nongpl
4.23.0
hd8ed1ab_1
conda-forge
jupyter-resource-usage
0.7.1
pyhd8ed1ab_0
conda-forge
jupyter_client
7.4.9
pyhd8ed1ab_0
conda-forge
jupyter_core
5.7.2
pyh5737063_1
conda-forge
jupyter_events
0.12.0
pyh29332c3_0
conda-forge
jupyter_server
2.15.0
pyhd8ed1ab_0
conda-forge
jupyter_server_terminals
0.5.3
pyhd8ed1ab_1
conda-forge
jupyterlab
3.5.3
pyhd8ed1ab_0
conda-forge
jupyterlab-favorites
3.2.2
pyhd8ed1ab_0
conda-forge
jupyterlab-system-monitor
0.8.0
pyhd8ed1ab_2
conda-forge
jupyterlab-topbar
0.6.1
pyhd8ed1ab_3
conda-forge
jupyterlab_pygments
0.3.0
pyhd8ed1ab_0
conda-forge
jupyterlab_server
2.27.3
pyhd8ed1ab_1
conda-forge
jupyterlab_widgets
3.0.14
pyhd8ed1ab_0
conda-forge
kiwisolver
1.4.7
py313h1ec8472_0
conda-forge
krb5
1.21.3
hdf4eb48_0
conda-forge
lcms2
2.17
hbcf6048_0
conda-forge
lerc
4.0.0
h63175ca_0
conda-forge
libblas
3.9.0
31_h641d27c_mkl
conda-forge
libbrotlicommon
1.1.0
h2466b09_2
conda-forge
libbrotlidec
1.1.0
h2466b09_2
conda-forge
libbrotlienc
1.1.0
h2466b09_2
conda-forge
libcblas
3.9.0
31_h5e41251_mkl
conda-forge
libdeflate
1.23
h9062f6e_0
conda-forge
libexpat
2.7.0
he0c23c2_0
conda-forge
libffi
3.4.6
h537db12_1
conda-forge
libgcc
14.2.0
h1383e82_2
conda-forge
libgomp
14.2.0
h1383e82_2
conda-forge
libhwloc
2.11.2
default_ha69328c_1001
conda-forge
libiconv
1.18
h135ad9c_1
conda-forge
libjpeg-turbo
3.0.0
hcfcfb64_1
conda-forge
liblapack
3.9.0
31_h1aa476e_mkl
conda-forge
liblzma
5.8.1
h2466b09_0
conda-forge
libmpdec
4.0.0
h2466b09_0
conda-forge
libpng
1.6.47
had7236b_0
conda-forge
libsodium
1.0.20
hc70643c_0
conda-forge
libsqlite
3.49.1
h67fdade_2
conda-forge
libtiff
4.7.0
h797046b_3
conda-forge
libwebp-base
1.5.0
h3b0e114_0
conda-forge
libwinpthread
12.0.0.r4.gg4f2fc60ca
h57928b3_9
conda-forge
libxcb
1.17.0
h0e4246cáj
if you more env set up thread
Hello,
I have finished the DLS 1 last week and I want to train/experiment and exercise my new knowledge in a project of my own. So I checked possibilities and installed pycharm and python 3.10.0 and python 3.8.10.
The challenge: The DLS Week 4 second assignment does not work out of the box for me. I installed all the “importet” libraries from within pycharm but some are not compatible with the above mentioned versions of python.
Which is the version of python that you recommend to use for all…
Ok…so a fairly deep rabbit hole later…
So I thought about this problem a bit and came to the conclusion that building a docker image where python, tensorflow, etc versions match the online deep learning notebook environment would be beneficial. It would be easy to share and once it works it works.
So we can print some of the package versions by modifying the code in one of the online notebooks, something like this:
import sys # Import the sys module to access system-specific parameters and f…
I’ve been getting some funny asserts and errors trying to run the notebooks from this specialization… my environment is as follows:
OS: Linux Mint 19.3
python: 3.8
TF-GPU: 2.4.0
I can’t find a way to specify tf-gpu 2.3.0 as used by this specialization… specifying conda env with python 3.7 will give tf 2.4. I did manage to get tf 2.2 with python 3.6.
Can someone please advice me on hopw to set up the same environment used by this specialization (python 3.7 + tf-gpu 2.3.0) ?
I tried conda i…