I am getting this error on exercise # 2 on alpaca_model
function.
My code follows the instruction of setting base_model trainable = False
and implemented global avg pooling tfl.GlobalAveragePooling2D()
and dropout set to (.2) and finally the prediction is done using mobilenet_v2.decode_predictions
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-19-11ffc7a7acb3> in <module>
----> 1 model2 = alpaca_model(IMG_SIZE, data_augmentation)
<ipython-input-18-26290cafafdf> in alpaca_model(image_shape, data_augmentation)
47 ### END CODE HERE
48
---> 49 model = tf.keras.Model(inputs, outputs)
50
51 return model
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py in __new__(cls, *args, **kwargs)
240 # Functional model
241 from tensorflow.python.keras.engine import functional # pylint: disable=g-import-not-at-top
--> 242 return functional.Functional(*args, **kwargs)
243 else:
244 return super(Model, cls).__new__(cls, *args, **kwargs)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/training/tracking/base.py in _method_wrapper(self, *args, **kwargs)
455 self._self_setattr_tracking = False # pylint: disable=protected-access
456 try:
--> 457 result = method(self, *args, **kwargs)
458 finally:
459 self._self_setattr_tracking = previous_value # pylint: disable=protected-access
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/functional.py in __init__(self, inputs, outputs, name, trainable)
113 # 'arguments during initialization. Got an unexpected argument:')
114 super(Functional, self).__init__(name=name, trainable=trainable)
--> 115 self._init_graph_network(inputs, outputs)
116
117 @trackable.no_automatic_dependency_tracking
/opt/conda/lib/python3.7/site-packages/tensorflow/python/training/tracking/base.py in _method_wrapper(self, *args, **kwargs)
455 self._self_setattr_tracking = False # pylint: disable=protected-access
456 try:
--> 457 result = method(self, *args, **kwargs)
458 finally:
459 self._self_setattr_tracking = previous_value # pylint: disable=protected-access
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/functional.py in _init_graph_network(self, inputs, outputs)
140
141 if any(not hasattr(tensor, '_keras_history') for tensor in self.outputs):
--> 142 base_layer_utils.create_keras_history(self._nested_outputs)
143
144 self._validate_graph_inputs_and_outputs()
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/base_layer_utils.py in create_keras_history(tensors)
189 the raw Tensorflow operations.
190 """
--> 191 _, created_layers = _create_keras_history_helper(tensors, set(), [])
192 return created_layers
193
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/base_layer_utils.py in _create_keras_history_helper(tensors, processed_ops, created_layers)
224 'op wrapping. Please wrap these ops in a Lambda layer: '
225 '\n\n```\n{example}\n```\n'.format(example=example))
--> 226 op = tensor.op # The Op that created this Tensor.
227 if op not in processed_ops:
228 # Recursively set `_keras_history`.
AttributeError: 'str' object has no attribute 'op'