DLS 2, Week 1, Programming Asssignment, Node: 'sequential/conv2d/Conv2D', DNN library is not found

Dear Community Members,

Training my model generates the following error. I suspect it is a configuration issue with Google Colab. I would be very thankful if you could give me some advice.

Best regards,

François C.

Epoch 1/15

---------------------------------------------------------------------------

UnimplementedError                        Traceback (most recent call last)

<ipython-input-11-80f725f2069f> in <module>
      8                     epochs=15,
      9                     verbose=1,
---> 10                     validation_data=validation_generator)

1 frames

/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/execute.py in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
     53     ctx.ensure_initialized()
     54     tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
---> 55                                         inputs, attrs, num_outputs)
     56   except core._NotOkStatusException as e:
     57     if name is not None:

UnimplementedError: Graph execution error:

Detected at node 'sequential/conv2d/Conv2D' defined at (most recent call last):
    File "/usr/lib/python3.7/runpy.py", line 193, in _run_module_as_main
      "__main__", mod_spec)
    File "/usr/lib/python3.7/runpy.py", line 85, in _run_code
      exec(code, run_globals)
    File "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py", line 16, in <module>
      app.launch_new_instance()
    File "/usr/local/lib/python3.7/dist-packages/traitlets/config/application.py", line 846, in launch_instance
      app.start()
    File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelapp.py", line 612, in start
      self.io_loop.start()
    File "/usr/local/lib/python3.7/dist-packages/tornado/platform/asyncio.py", line 132, in start
      self.asyncio_loop.run_forever()
    File "/usr/lib/python3.7/asyncio/base_events.py", line 541, in run_forever
      self._run_once()
    File "/usr/lib/python3.7/asyncio/base_events.py", line 1786, in _run_once
      handle._run()
    File "/usr/lib/python3.7/asyncio/events.py", line 88, in _run
      self._context.run(self._callback, *self._args)
    File "/usr/local/lib/python3.7/dist-packages/tornado/ioloop.py", line 758, in _run_callback
      ret = callback()
    File "/usr/local/lib/python3.7/dist-packages/tornado/stack_context.py", line 300, in null_wrapper
      return fn(*args, **kwargs)
    File "/usr/local/lib/python3.7/dist-packages/tornado/gen.py", line 1233, in inner
      self.run()
    File "/usr/local/lib/python3.7/dist-packages/tornado/gen.py", line 1147, in run
      yielded = self.gen.send(value)
    File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelbase.py", line 381, in dispatch_queue
      yield self.process_one()
    File "/usr/local/lib/python3.7/dist-packages/tornado/gen.py", line 346, in wrapper
      runner = Runner(result, future, yielded)
    File "/usr/local/lib/python3.7/dist-packages/tornado/gen.py", line 1080, in __init__
      self.run()
    File "/usr/local/lib/python3.7/dist-packages/tornado/gen.py", line 1147, in run
      yielded = self.gen.send(value)
    File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelbase.py", line 365, in process_one
      yield gen.maybe_future(dispatch(*args))
    File "/usr/local/lib/python3.7/dist-packages/tornado/gen.py", line 326, in wrapper
      yielded = next(result)
    File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelbase.py", line 268, in dispatch_shell
      yield gen.maybe_future(handler(stream, idents, msg))
    File "/usr/local/lib/python3.7/dist-packages/tornado/gen.py", line 326, in wrapper
      yielded = next(result)
    File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelbase.py", line 545, in execute_request
      user_expressions, allow_stdin,
    File "/usr/local/lib/python3.7/dist-packages/tornado/gen.py", line 326, in wrapper
      yielded = next(result)
    File "/usr/local/lib/python3.7/dist-packages/ipykernel/ipkernel.py", line 306, in do_execute
      res = shell.run_cell(code, store_history=store_history, silent=silent)
    File "/usr/local/lib/python3.7/dist-packages/ipykernel/zmqshell.py", line 536, in run_cell
      return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
    File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 2855, in run_cell
      raw_cell, store_history, silent, shell_futures)
    File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 2881, in _run_cell
      return runner(coro)
    File "/usr/local/lib/python3.7/dist-packages/IPython/core/async_helpers.py", line 68, in _pseudo_sync_runner
      coro.send(None)
    File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 3058, in run_cell_async
      interactivity=interactivity, compiler=compiler, result=result)
    File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 3249, in run_ast_nodes
      if (await self.run_code(code, result,  async_=asy)):
    File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 3326, in run_code
      exec(code_obj, self.user_global_ns, self.user_ns)
    File "<ipython-input-11-80f725f2069f>", line 10, in <module>
      validation_data=validation_generator)
    File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 64, in error_handler
      return fn(*args, **kwargs)
    File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1409, in fit
      tmp_logs = self.train_function(iterator)
    File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1051, in train_function
      return step_function(self, iterator)
    File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1040, in step_function
      outputs = model.distribute_strategy.run(run_step, args=(data,))
    File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1030, in run_step
      outputs = model.train_step(data)
    File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 889, in train_step
      y_pred = self(x, training=True)
    File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 64, in error_handler
      return fn(*args, **kwargs)
    File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 490, in __call__
      return super().__call__(*args, **kwargs)
    File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 64, in error_handler
      return fn(*args, **kwargs)
    File "/usr/local/lib/python3.7/dist-packages/keras/engine/base_layer.py", line 1014, in __call__
      outputs = call_fn(inputs, *args, **kwargs)
    File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 92, in error_handler
      return fn(*args, **kwargs)
    File "/usr/local/lib/python3.7/dist-packages/keras/engine/sequential.py", line 374, in call
      return super(Sequential, self).call(inputs, training=training, mask=mask)
    File "/usr/local/lib/python3.7/dist-packages/keras/engine/functional.py", line 459, in call
      inputs, training=training, mask=mask)
    File "/usr/local/lib/python3.7/dist-packages/keras/engine/functional.py", line 596, in _run_internal_graph
      outputs = node.layer(*args, **kwargs)
    File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 64, in error_handler
      return fn(*args, **kwargs)
    File "/usr/local/lib/python3.7/dist-packages/keras/engine/base_layer.py", line 1014, in __call__
      outputs = call_fn(inputs, *args, **kwargs)
    File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 92, in error_handler
      return fn(*args, **kwargs)
    File "/usr/local/lib/python3.7/dist-packages/keras/layers/convolutional/base_conv.py", line 250, in call
      outputs = self.convolution_op(inputs, self.kernel)
    File "/usr/local/lib/python3.7/dist-packages/keras/layers/convolutional/base_conv.py", line 232, in convolution_op
      name=self.__class__.__name__)
Node: 'sequential/conv2d/Conv2D'
DNN library is not found.
	 [[{{node sequential/conv2d/Conv2D}}]] [Op:__inference_train_function_1111]

Hi @Francois_Cardinaux,

There could be number of things that could be the cause here, prominently being the difference in the Tensorflow version in the Coursera environment and the Colab environment.

We (mentors and staff) don’t necessarily support running of the labs in Colabs or local machine because there could be many unforeseen reasons. Happy to help you with anything related to the Coursera environment.

But we would encourage that you figure this out on your own and share your solution here.

Best of luck,
Mubsi

Please see this thread.

Running the assignments in a different environment is a complicated process and there are no official instructions. There are some threads on Discourse from other students who have tried this, which are worth a look to get started. E.g. have a look at this thread and this one for some ideas. But just keep in mind Mubsi’s point that this is a community support thing and not the type of question that the course staff or the mentors (who are unpaid volunteers BTW) are expected to do the research to answer, since it’s not really a question about the course material.

Thank you @balaji.ambresh. The thread you suggested solved my issue.