Hi, I am getting an error in a cell which I have not edited. I couldn’t figure out the but by going thru the error message. Can someone help, please. (pls point me to previous discussion if its exits).
Pasting the code since it is from a non-graded function. Below is the cell which I am getting error on.
fine_tune_epochs = 5
total_epochs = initial_epochs + fine_tune_epochs
history_fine = model2.fit(train_dataset,
epochs=total_epochs,
initial_epoch=history.epoch[-1],
validation_data=validation_dataset)
Below is the error log
Epoch 5/10
TypeError Traceback (most recent call last)
in
5 epochs=total_epochs,
6 initial_epoch=history.epoch[-1],
----> 7 validation_data=validation_dataset)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py in _method_wrapper(self, *args, **kwargs)
106 def _method_wrapper(self, *args, **kwargs):
107 if not self._in_multi_worker_mode(): # pylint: disable=protected-access
→ 108 return method(self, *args, **kwargs)
109
110 # Running inside run_distribute_coordinator
already.
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)
1096 batch_size=batch_size):
1097 callbacks.on_train_batch_begin(step)
→ 1098 tmp_logs = train_function(iterator)
1099 if data_handler.should_sync:
1100 context.async_wait()
/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in call(self, *args, **kwds)
778 else:
779 compiler = “nonXla”
→ 780 result = self._call(*args, **kwds)
781
782 new_tracing_count = self._get_tracing_count()
/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds)
821 # This is the first call of call, so we have to initialize.
822 initializers =
→ 823 self._initialize(args, kwds, add_initializers_to=initializers)
824 finally:
825 # At this point we know that the initialization is complete (or less
/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in _initialize(self, args, kwds, add_initializers_to)
695 self._concrete_stateful_fn = (
696 self._stateful_fn._get_concrete_function_internal_garbage_collected( # pylint: disable=protected-access
→ 697 *args, **kwds))
698
699 def invalid_creator_scope(*unused_args, **unused_kwds):
/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs)
2853 args, kwargs = None, None
2854 with self._lock:
→ 2855 graph_function, _, _ = self._maybe_define_function(args, kwargs)
2856 return graph_function
2857
/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py in _maybe_define_function(self, args, kwargs)
3211
3212 self._function_cache.missed.add(call_context_key)
→ 3213 graph_function = self._create_graph_function(args, kwargs)
3214 self._function_cache.primary[cache_key] = graph_function
3215 return graph_function, args, kwargs
/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
3073 arg_names=arg_names,
3074 override_flat_arg_shapes=override_flat_arg_shapes,
→ 3075 capture_by_value=self._capture_by_value),
3076 self._function_attributes,
3077 function_spec=self.function_spec,
/opt/conda/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
984 _, original_func = tf_decorator.unwrap(python_func)
985
→ 986 func_outputs = python_func(*func_args, **func_kwargs)
987
988 # invariant: func_outputs
contains only Tensors, CompositeTensors,
/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in wrapped_fn(*args, **kwds)
598 # wrapped allows AutoGraph to swap in a converted function. We give
599 # the function a weak reference to itself to avoid a reference cycle.
→ 600 return weak_wrapped_fn().wrapped(*args, **kwds)
601 weak_wrapped_fn = weakref.ref(wrapped_fn)
602
/opt/conda/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs)
971 except Exception as e: # pylint:disable=broad-except
972 if hasattr(e, “ag_error_metadata”):
→ 973 raise e.ag_error_metadata.to_exception(e)
974 else:
975 raise
TypeError: in user code:
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py:806 train_function *
return step_function(self, iterator)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py:796 step_function **
outputs = model.distribute_strategy.run(run_step, args=(data,))
/opt/conda/lib/python3.7/site-packages/tensorflow/python/distribute/distribute_lib.py:1211 run
return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/distribute/distribute_lib.py:2585 call_for_each_replica
return self._call_for_each_replica(fn, args, kwargs)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/distribute/distribute_lib.py:2945 _call_for_each_replica
return fn(*args, **kwargs)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py:789 run_step **
outputs = model.train_step(data)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py:747 train_step
y_pred = self(x, training=True)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/base_layer.py:985 __call__
outputs = call_fn(inputs, *args, **kwargs)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/functional.py:386 call
inputs, training=training, mask=mask)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/functional.py:508 _run_internal_graph
outputs = node.layer(*args, **kwargs)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/base_layer.py:985 __call__
outputs = call_fn(inputs, *args, **kwargs)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/functional.py:386 call
inputs, training=training, mask=mask)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/functional.py:508 _run_internal_graph
outputs = node.layer(*args, **kwargs)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/base_layer.py:985 __call__
outputs = call_fn(inputs, *args, **kwargs)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/layers/normalization.py:720 call
outputs = self._fused_batch_norm(inputs, training=training)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/layers/normalization.py:577 _fused_batch_norm
_fused_batch_norm_inference)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/utils/tf_utils.py:65 smart_cond
pred, true_fn=true_fn, false_fn=false_fn, name=name)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/framework/smart_cond.py:51 smart_cond
pred_value = smart_constant_value(pred)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/framework/smart_cond.py:88 smart_constant_value
"Found instead: %s" % type(pred))
TypeError: `pred` must be a Tensor, or a Python bool, or 1 or 0. Found instead: <class 'str'>
I tried to print the validation_dataset and I can see it as a tensor and not a string. Not sure if I accidentally edited something which I am not supposed to.
validation_dataset
<BatchDataset shapes: ((None, 160, 160, 3), (None,)), types: (tf.float32, tf.int32)>