Is it possible to apply the RAG Triad of metrics to Langchain implementation instead of Llama index?
I see that when you define a feedback function like in
qs_relevance = (
Feedback(openai.qs_relevance,
name="Context Relevance")
.on_input()
.on(context_selection)
.aggregate(np.mean)
)
you make use of a selector for the context selection:
from trulens_eval import TruLlama
context_selection = TruLlama.select_source_nodes().node.text
But I can’t see the equivalent of retrieving the relevant documents from a Vector renderer in Langchain.