Hi,
I have a problem to understand the behavior of my model:
-
My small model reached directly a validation accuracy of 0.8 (higher then train accuracy)
-
So I decided that it is enough to overfit the training data by increasing model size. The result is attached. I understand, I do overfit the training data, but why is the validation accuracy in all models in the first epochs higher then training accuracy? The validation dataset is symmetric and stratified, I would have rather expected to get a validation accuracy in the beginning in the range of 0.5?
Epoch 1/15
466/1125 [===========>…] - ETA: 4:17 - loss: 0.6797 - accuracy: 0.5911
/home/mirko/anaconda3/envs/tens1/lib/python3.9/site-packages/PIL/TiffImagePlugin.py:845: UserWarning: Truncated File Read
warnings.warn(str(msg))
1125/1125 [==============================] - 462s 410ms/step - loss: 0.6393 - accuracy: 0.6368 - val_loss: 0.5738 - val_accuracy: 0.6980
Epoch 2/15
1125/1125 [==============================] - 475s 422ms/step - loss: 0.4977 - accuracy: 0.7565 - val_loss: 0.4500 - val_accuracy: 0.7912
Epoch 3/15
1125/1125 [==============================] - 512s 455ms/step - loss: 0.3898 - accuracy: 0.8237 - val_loss: 0.3862 - val_accuracy: 0.8308
Epoch 4/15
1125/1125 [==============================] - 466s 414ms/step - loss: 0.2720 - accuracy: 0.8835 - val_loss: 0.4553 - val_accuracy: 0.8032
Epoch 5/15
1125/1125 [==============================] - 464s 412ms/step - loss: 0.1270 - accuracy: 0.9525 - val_loss: 0.5589 - val_accuracy: 0.8352
Epoch 6/15
1125/1125 [==============================] - 465s 414ms/step - loss: 0.0490 - accuracy: 0.9844 - val_loss: 0.6640 - val_accuracy: 0.8216
Epoch 7/15
1125/1125 [==============================] - 467s 415ms/step - loss: 0.0393 - accuracy: 0.9878 - val_loss: 0.9330 - val_accuracy: 0.8204
Epoch 8/15
1125/1125 [==============================] - 461s 409ms/step - loss: 0.0291 - accuracy: 0.9906 - val_loss: 1.0848 - val_accuracy: 0.8216
Epoch 9/15
1125/1125 [==============================] - 467s 415ms/step - loss: 0.0263 - accuracy: 0.9920 - val_loss: 1.5080 - val_accuracy: 0.8008
Epoch 10/15
1125/1125 [==============================] - 488s 434ms/step - loss: 0.0403 - accuracy: 0.9886 - val_loss: 1.0494 - val_accuracy: 0.8228
Epoch 11/15
1125/1125 [==============================] - 446s 396ms/step - loss: 0.0156 - accuracy: 0.9969 - val_loss: 1.4513 - val_accuracy: 0.8168
Epoch 12/15
1125/1125 [==============================] - 484s 430ms/step - loss: 0.0116 - accuracy: 0.9969 - val_loss: 1.3318 - val_accuracy: 0.8204
Epoch 13/15
1125/1125 [==============================] - 471s 419ms/step - loss: 0.0265 - accuracy: 0.9922 - val_loss: 1.1205 - val_accuracy: 0.8100
Epoch 14/15
1125/1125 [==============================] - 452s 402ms/step - loss: 0.0226 - accuracy: 0.9943 - val_loss: 1.2086 - val_accuracy: 0.8176
Epoch 15/15
1125/1125 [==============================] - 450s 400ms/step - loss: 0.0259 - accuracy: 0.9932 - val_loss: 1.1753 - val_accuracy: 0.8004