UNQ_C4
GRADED FUNCTION
def ReformerLM(vocab_size=33000, n_layers=2, mode=‘train’, attention_type=tl.SelfAttention):
“”"
Args:
vocab_size (int): size of the vocabulary
n_layers (int): number of decoder layers
mode (string): setting of the model which can be ‘train’, ‘eval’, or ‘predict’
attention_type(class): attention class to use
Returns:
model (ReformerLM): a reformer language model implemented in Trax
“”"
### START CODE HERE (REPLACE INSTANCES OF 'None' WITH YOUR CODE) ###
# initialize an instance of Trax's ReformerLM class
model = trax.models.reformer.ReformerLM(
# set vocab size
vocab_size=vocab_size,
# set number of layers
n_layers=n_layers,
# set mode
mode=mode,
# set attention type
attention_type=attention_type
)
### END CODE HERE ###
return model
This is my code for UNQ_C$ but getting error in this section
Error:
Failed str_rep_check.
Expected:
Serial[
Serial[
Serial[
ShiftRight(1)
]
Embedding_33000_512
Dropout
Serial[
PositionalEncoding
]
Dup_out2
ReversibleSerial_in2_out2[
ReversibleHalfResidualDecoderAttn_in2_out2[
Serial[
LayerNorm
]
SelfAttention
]
ReversibleSwap_in2_out2
ReversibleHalfResidualDecoderFF_in2_out2[
Serial[
LayerNorm
Dense_2048
Dropout
Serial[
FastGelu
]
Dense_512
Dropout
]
]
ReversibleSwap_in2_out2
ReversibleHalfResidualDecoderAttn_in2_out2[
Serial[
LayerNorm
]
SelfAttention
]
ReversibleSwap_in2_out2
ReversibleHalfResidualDecoderFF_in2_out2[
Serial[
LayerNorm
Dense_2048
Dropout
Serial[
FastGelu
]
Dense_512
Dropout
]
]
ReversibleSwap_in2_out2
]
Concatenate_in2
LayerNorm
Dropout
Serial[
Dense_33000
]
]
LogSoftmax
],
but got:
Serial[
Serial[
ShiftRight(1)
]
Embedding_33000_512
Dropout
Serial[
PositionalEncoding
]
Dup_out2
ReversibleSerial_in2_out2[
ReversibleHalfResidualDecoderAttn_in2_out2[
Serial[
LayerNorm
]
SelfAttention
]
ReversibleSwap_in2_out2
ReversibleHalfResidualDecoderFF_in2_out2[
Serial[
LayerNorm
Dense_2048
Dropout
Serial[
FastGelu
]
Dense_512
Dropout
]
]
ReversibleSwap_in2_out2
ReversibleHalfResidualDecoderAttn_in2_out2[
Serial[
LayerNorm
]
SelfAttention
]
ReversibleSwap_in2_out2
ReversibleHalfResidualDecoderFF_in2_out2[
Serial[
LayerNorm
Dense_2048
Dropout
Serial[
FastGelu
]
Dense_512
Dropout
]
]
ReversibleSwap_in2_out2
]
Concatenate_in2
LayerNorm
Dropout
Serial[
Dense_33000
]
].
Failed str_rep_check.
Expected:
Serial[
Serial[
Serial[
ShiftRight(1)
]
Embedding_100_512
Dropout
Serial[
PositionalEncoding
]
Dup_out2
ReversibleSerial_in2_out2[
ReversibleHalfResidualDecoderAttn_in2_out2[
Serial[
LayerNorm
]
SelfAttention
]
ReversibleSwap_in2_out2
ReversibleHalfResidualDecoderFF_in2_out2[
Serial[
LayerNorm
Dense_2048
Dropout
Serial[
FastGelu
]
Dense_512
Dropout
]
]
ReversibleSwap_in2_out2
ReversibleHalfResidualDecoderAttn_in2_out2[
Serial[
LayerNorm
]
SelfAttention
]
ReversibleSwap_in2_out2
ReversibleHalfResidualDecoderFF_in2_out2[
Serial[
LayerNorm
Dense_2048
Dropout
Serial[
FastGelu
]
Dense_512
Dropout
]
]
ReversibleSwap_in2_out2
ReversibleHalfResidualDecoderAttn_in2_out2[
Serial[
LayerNorm
]
SelfAttention
]
ReversibleSwap_in2_out2
ReversibleHalfResidualDecoderFF_in2_out2[
Serial[
LayerNorm
Dense_2048
Dropout
Serial[
FastGelu
]
Dense_512
Dropout
]
]
ReversibleSwap_in2_out2
]
Concatenate_in2
LayerNorm
Dropout
Serial[
Dense_100
]
]
LogSoftmax
],
but got:
Serial[
Serial[
ShiftRight(1)
]
Embedding_100_512
Dropout
Serial[
PositionalEncoding
]
Dup_out2
ReversibleSerial_in2_out2[
ReversibleHalfResidualDecoderAttn_in2_out2[
Serial[
LayerNorm
]
SelfAttention
]
ReversibleSwap_in2_out2
ReversibleHalfResidualDecoderFF_in2_out2[
Serial[
LayerNorm
Dense_2048
Dropout
Serial[
FastGelu
]
Dense_512
Dropout
]
]
ReversibleSwap_in2_out2
ReversibleHalfResidualDecoderAttn_in2_out2[
Serial[
LayerNorm
]
SelfAttention
]
ReversibleSwap_in2_out2
ReversibleHalfResidualDecoderFF_in2_out2[
Serial[
LayerNorm
Dense_2048
Dropout
Serial[
FastGelu
]
Dense_512
Dropout
]
]
ReversibleSwap_in2_out2
ReversibleHalfResidualDecoderAttn_in2_out2[
Serial[
LayerNorm
]
SelfAttention
]
ReversibleSwap_in2_out2
ReversibleHalfResidualDecoderFF_in2_out2[
Serial[
LayerNorm
Dense_2048
Dropout
Serial[
FastGelu
]
Dense_512
Dropout
]
]
ReversibleSwap_in2_out2
]
Concatenate_in2
LayerNorm
Dropout
Serial[
Dense_100
]
].
Training loop