In “Introduction to TensorFlow” exercise, forward problem takes parameters
but trainable_variables = [W1, b1, W2, b2, W3, b3]
:
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
W3 = parameters['W3']
b3 = parameters['b3']
...
with tf.GradientTape() as tape:
Z3 = forward_propagation(tf.transpose(minibatch_X), parameters)
minibatch_total_loss = compute_total_loss(Z3, tf.transpose(minibatch_Y))
train_accuracy.update_state(minibatch_Y, tf.transpose(Z3))
trainable_variables = [W1, b1, W2, b2, W3, b3]
This is a bit confusing. Do I understand correctly that Tensorflow tracks that W1
, … used in trainable_variables
reference same objects as what forward_propagation
grabs from parameters
?