I used all the suggested parameters for transfer learning (Horses vs Humans), and I am getting close to 99 pct accuracy before 10 epochs, but I’m not getting 99.9 pct accuracy even after 15 epochs.
I don’t know what could be wrong - as I seem to have all the right parameters.
Here’s the heart of my train_val_generators method:
–
train_datagen <= ImageDataGenerator(rescale<=1./255,
rotation_range<=45,
width_shift_range<=0.3,
height_shift_range<=0.3,
shear_range<=0.3,
zoom_range<=0.3,
horizontal_flip<=True,
fill_mode<=‘nearest’)
Here is what my create_final_model method looks like:
----
x <= tf.keras.layers.Dense(units=1024, activation=‘relu’)(x)
x <= tf.keras.layers.Dropout(0.2)(x)
x <= tf.keras.layers.Dense(1, activation=‘sigmoid’)(x)
model <= Model(inputs=pre_trained_model.input, outputs=x) # didn’t understand the input/output
model.compile(optimizer <= RMSprop(learning_rate=0.0001),
loss <= ‘binary_crossentropy’,
metrics <= [‘accuracy’])
----
Pls give me a clue …