Is it okay if the training accuracy oscillates up and down during training, I am expecting it to increase smoothly as long as the model architecture is big enough to fit the data or it would just decrease if it is underfitting the data. but why is it getting up and down randomly?
code:
[snippet removed by mentor]
- code involves augmenting data with transformations other than rescale.
- model doesn’t contain a dropout layer
- learning rate is of the other of e-4
result:
Found 2000 images belonging to 2 classes.
Found 1000 images belonging to 2 classes.
Epoch 1/20
100/100 - 22s - loss: 0.6925 - accuracy: 0.5175 - val_loss: 0.6829 - val_accuracy: 0.5220 - 22s/epoch - 216ms/step
Epoch 2/20
100/100 - 19s - loss: 0.6793 - accuracy: 0.5580 - val_loss: 0.6613 - val_accuracy: 0.6130 - 19s/epoch - 187ms/step
Epoch 3/20
100/100 - 18s - loss: 0.6730 - accuracy: 0.5765 - val_loss: 0.6650 - val_accuracy: 0.5990 - 18s/epoch - 182ms/step
Epoch 4/20
100/100 - 19s - loss: 0.6635 - accuracy: 0.5955 - val_loss: 0.7331 - val_accuracy: 0.5180 - 19s/epoch - 188ms/step
Epoch 5/20
100/100 - 18s - loss: 0.6562 - accuracy: 0.6055 - val_loss: 0.6222 - val_accuracy: 0.6540 - 18s/epoch - 176ms/step
Epoch 6/20
100/100 - 18s - loss: 0.6331 - accuracy: 0.6465 - val_loss: 0.6163 - val_accuracy: 0.6650 - 18s/epoch - 176ms/step
Epoch 7/20
100/100 - 19s - loss: 0.6301 - accuracy: 0.6420 - val_loss: 0.6044 - val_accuracy: 0.6760 - 19s/epoch - 186ms/step
Epoch 8/20
100/100 - 20s - loss: 0.6176 - accuracy: 0.6555 - val_loss: 0.5835 - val_accuracy: 0.6850 - 20s/epoch - 201ms/step
Epoch 9/20
100/100 - 18s - loss: 0.6096 - accuracy: 0.6600 - val_loss: 0.5808 - val_accuracy: 0.6870 - 18s/epoch - 177ms/step
Epoch 10/20
100/100 - 19s - loss: 0.6060 - accuracy: 0.6695 - val_loss: 0.5914 - val_accuracy: 0.6730 - 19s/epoch - 186ms/step
Epoch 11/20
100/100 - 17s - loss: 0.5995 - accuracy: 0.6690 - val_loss: 0.5658 - val_accuracy: 0.7200 - 17s/epoch - 174ms/step
Epoch 12/20
100/100 - 20s - loss: 0.6027 - accuracy: 0.6680 - val_loss: 0.5672 - val_accuracy: 0.6880 - 20s/epoch - 200ms/step
Epoch 13/20
100/100 - 18s - loss: 0.5911 - accuracy: 0.6830 - val_loss: 0.5652 - val_accuracy: 0.7020 - 18s/epoch - 177ms/step
Epoch 14/20
100/100 - 18s - loss: 0.5920 - accuracy: 0.6845 - val_loss: 0.5560 - val_accuracy: 0.7080 - 18s/epoch - 185ms/step
Epoch 15/20
100/100 - 18s - loss: 0.5768 - accuracy: 0.6955 - val_loss: 0.5576 - val_accuracy: 0.7070 - 18s/epoch - 177ms/step
Epoch 16/20
100/100 - 21s - loss: 0.5678 - accuracy: 0.7035 - val_loss: 0.5567 - val_accuracy: 0.7070 - 21s/epoch - 210ms/step
Epoch 17/20
100/100 - 19s - loss: 0.5707 - accuracy: 0.6950 - val_loss: 0.5518 - val_accuracy: 0.7020 - 19s/epoch - 185ms/step
Epoch 18/20
100/100 - 18s - loss: 0.5654 - accuracy: 0.7090 - val_loss: 0.5239 - val_accuracy: 0.7330 - 18s/epoch - 177ms/step
Epoch 19/20
100/100 - 17s - loss: 0.5555 - accuracy: 0.7135 - val_loss: 0.5907 - val_accuracy: 0.6840 - 17s/epoch - 175ms/step
Epoch 20/20
100/100 - 19s - loss: 0.5562 - accuracy: 0.7080 - val_loss: 0.5270 - val_accuracy: 0.7390 - 19s/epoch - 186ms/step