Hi everyone. I’ve actually posted about this before but I am still stuck. My Z is not the right shape. Z.shape yields (). I tried using an assert line to fix this, but the code breaks before that due to an index error as shown in the error message. The code and error message are below.
{moderator edit - solution code removed}
The shape of Z is supposed to be the output shape. You’re using the dimensions of the input to define it. I added print statements to my code to show the dimensions of various objects. Here’s what I get when I run the standard test cases:
New dimensions = 3 by 4
Shape Z = (2, 3, 4, 8)
Shape A_prev_pad = (2, 7, 9, 4)
Z[0,0,0,0] = -2.651123629553914
Z[1,2,3,7] = 0.4427056509973153
Z's mean =
0.5511276474566768
Z[0,2,1] =
[-2.17796037 8.07171329 -0.5772704 3.36286738 4.48113645 -2.89198428
10.99288867 3.03171932]
cache_conv[0][1][2][3] =
[-1.1191154 1.9560789 -0.3264995 -1.34267579]
New dimensions = 9 by 11
Shape Z = (2, 9, 11, 8)
Shape A_prev_pad = (2, 11, 13, 4)
Z[0,0,0,0] = -1.2238796505752447
Z[1,8,10,7] = -0.47458986707940803
New dimensions = 2 by 3
Shape Z = (2, 2, 3, 8)
Shape A_prev_pad = (2, 5, 7, 4)
Z[0,0,0,0] = 3.14880664541713
Z[1,1,2,7] = 1.0956417259542868
New dimensions = 13 by 15
Shape Z = (2, 13, 15, 8)
Shape A_prev_pad = (2, 17, 19, 4)
Z[0,0,0,0] = -0.5096687406137471
Z[1,12,14,7] = -0.3247422640409677
(2, 13, 15, 8)
New dimensions = 3 by 4
Shape Z = (2, 3, 4, 8)
Shape A_prev_pad = (2, 7, 9, 4)
Z[0,0,0,0] = -2.651123629553914
Z[1,2,3,7] = 0.4427056509973153
New dimensions = 3 by 4
Shape Z = (2, 3, 4, 8)
Shape A_prev_pad = (2, 7, 9, 4)
Z[0,0,0,0] = -2.651123629553914
Z[1,2,3,7] = 0.4427056509973153
New dimensions = 3 by 4
Shape Z = (2, 3, 4, 8)
Shape A_prev_pad = (2, 7, 9, 4)
Z[0,0,0,0] = -2.651123629553914
Z[1,2,3,7] = 0.4427056509973153
All tests passed.
2 Likes
The issue is with the arguments you’re using in Z = np.zeros(…).
3 Likes