Week 1 Assignment 2 parameters

Model: “functional_3”


Layer (type) Output Shape Param #

input_2 (InputLayer) [(None, 64, 64, 3)] 0


conv2d_4 (Conv2D) (None, 64, 64, 8) 392


re_lu_4 (ReLU) (None, 64, 64, 8) 0


max_pooling2d_4 (MaxPooling2 (None, 8, 8, 8) 0


conv2d_5 (Conv2D) (None, 8, 8, 16) 528


re_lu_5 (ReLU) (None, 8, 8, 16) 0


max_pooling2d_5 (MaxPooling2 (None, 2, 2, 16) 0


flatten_3 (Flatten) (None, 64) 0


dense_3 (Dense) (None, 6) 390

I do not understand why Conv2D have 528 parameters? The number of parameters should be (2* 2* 16 * 3)+16 = 208 right?

Number of channels in previous layer is 8, not 3. So the result is:

1622*8+16=528 :slight_smile:

1 Like