I’m getting the following results:
Distribution parameters for training split:
{0: {‘bark_days’: params_binomial(n=30.000, p=0.800),
‘ear_head_ratio’: params_uniform(a=0.100, b=0.597),
‘height’: params_gaussian(mu=34.955, sigma=1.477),
‘weight’: params_gaussian(mu=19.916, sigma=0.997)},
1: {‘bark_days’: params_binomial(n=30.000, p=0.497),
‘ear_head_ratio’: params_uniform(a=0.201, b=0.500),
‘height’: params_gaussian(mu=30.041, sigma=1.999),
‘weight’: params_gaussian(mu=24.910, sigma=5.020)},
2: {‘bark_days’: params_binomial(n=30.000, p=0.298),
‘ear_head_ratio’: params_uniform(a=0.101, b=0.300),
‘height’: params_gaussian(mu=40.152, sigma=3.520),
‘weight’: params_gaussian(mu=31.927, sigma=3.045)}}
Probability of each class for training split:
{0: 0.346, 1: 0.393, 2: 0.26}
I should be getting:
Expected Output
Distribution parameters for training split:
{0: {'bark_days': params_binomial(n=30.000, p=0.801),
'ear_head_ratio': params_uniform(a=0.100, b=0.597),
'height': params_gaussian(mu=35.030, sigma=1.518),
'weight': params_gaussian(mu=20.020, sigma=1.012)},
1: {'bark_days': params_binomial(n=30.000, p=0.498),
'ear_head_ratio': params_uniform(a=0.201, b=0.500),
'height': params_gaussian(mu=29.971, sigma=2.010),
'weight': params_gaussian(mu=24.927, sigma=5.025)},
2: {'bark_days': params_binomial(n=30.000, p=0.296),
'ear_head_ratio': params_uniform(a=0.101, b=0.300),
'height': params_gaussian(mu=39.814, sigma=3.572),
'weight': params_gaussian(mu=31.841, sigma=3.061)}}
Probability of each class for training split:
{0: 0.346, 1: 0.393, 2: 0.26}
I think this is the cause for why my final accuracy score is only 0.98 instead of 1.00. Is this just a rounding thing that can be ignored or something more significant?