This is the entire error:
ValueError Traceback (most recent call last)
in
8 X = np.concatenate((X1, X2, X3), axis = 0).astype(np.float32)
9
—> 10 A = convolutional_block(X, f = 2, filters = [2, 4, 6], training=False)
11
12 assert type(A) == EagerTensor, “Use only tensorflow and keras functions”
in convolutional_block(X, f, filters, s, training, initializer)
55
56 # Final step: Add shortcut value to main path (Use this order [X, X_shortcut]), and pass it through a RELU activation
—> 57 X = Add()([X, X_shortcut])
58 X = Activation(‘relu’)(X)
59
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/base_layer.py in call(self, *args, **kwargs)
980 with ops.name_scope_v2(name_scope):
981 if not self.built:
→ 982 self._maybe_build(inputs)
983
984 with ops.enable_auto_cast_variables(self._compute_dtype_object):
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/base_layer.py in _maybe_build(self, inputs)
2641 # operations.
2642 with tf_utils.maybe_init_scope(self):
→ 2643 self.build(input_shapes) # pylint:disable=not-callable
2644 # We must set also ensure that the layer is marked as built, and the build
2645 # shape is stored since user defined build functions may not be calling
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/utils/tf_utils.py in wrapper(instance, input_shape)
321 if input_shape is not None:
322 input_shape = convert_shapes(input_shape, to_tuples=True)
→ 323 output_shape = fn(instance, input_shape)
324 # Return shapes from fn
as TensorShapes.
325 if output_shape is not None:
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/layers/merge.py in build(self, input_shape)
110 else:
111 shape = input_shape[i][1:]
→ 112 output_shape = self._compute_elemwise_op_output_shape(output_shape, shape)
113 # If the inputs have different ranks, we have to reshape them
114 # to make them broadcastable.
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/layers/merge.py in _compute_elemwise_op_output_shape(self, shape1, shape2)
83 raise ValueError(
84 'Operands could not be broadcast ’
—> 85 'together with shapes ’ + str(shape1) + ’ ’ + str(shape2))
86 output_shape.append(i)
87 return tuple(output_shape)
ValueError: Operands could not be broadcast together with shapes (1, 1, 6) (4, 4, 3)