I am having trouble getting past exercise 8, all others past successfully. I understand from previous threads that hardcoding the parameters in the optimize function within the model function, is a common source of error. I have tried everything possible but no success. Below is my error.
AssertionError Traceback (most recent call last)
in
1 from public_tests import *
2
----> 3 model_test(model)
~/work/release/W2A2/public_tests.py in model_test(target)
127 assert type(d[‘costs’]) == list, f"Wrong type for d[‘costs’]. {type(d[‘costs’])} != list"
128 assert len(d[‘costs’]) == 1, f"Wrong length for d[‘costs’]. {len(d[‘costs’])} != 1"
→ 129 assert np.allclose(d[‘costs’], expected_output[‘costs’]), f"Wrong values for d[‘costs’]. {d[‘costs’]} != {expected_output[‘costs’]}"
130
131 assert type(d[‘w’]) == np.ndarray, f"Wrong type for d[‘w’]. {type(d[‘w’])} != np.ndarray"
AssertionError: Wrong values for d[‘costs’]. [array(0.15900538)] != [array(0.69314718)]
I have also tried removing hardcoded parameters from the default optimize() function below:
def optimize(w, b, X, Y, num_iterations=100, learning_rate=0.009, print_cost=False):
I will appreciate an explanation to get me past this block.