I am using the code:
loss_function=tf.keras.losses.BinaryCrossentropy(from_logits=True)
optimizer = tf.keras.optimizers.Adam(0.1*base_learning_rate)
metrics=tf.keras.metrics.Accuracy()
model2.compile(optimizer=optimizer,
loss=loss_function,
metrics=metrics)
but get the error:
TypeError Traceback (most recent call last)
in
3 assert type(optimizer) == tf.keras.optimizers.Adam, “This is not an Adam optimizer”
4 assert optimizer.lr == base_learning_rate / 10, “Wrong learning rate”
----> 5 assert metrics[0] == ‘accuracy’, “Wrong metric”
6
7 print(’\033[92mAll tests passed!’)
TypeError: ‘Accuracy’ object is not subscriptable.
Changing to metrics=[‘accuracy’] doesn’t help either.