One of my grads calculations is choking - please advise where to look. Thanks!
t_AL, t_Y_assess, t_caches = L_model_backward_test_case()
grads = L_model_backward(t_AL, t_Y_assess, t_caches)
print("dA0 = " + str(grads[‘dA0’]))
print("dA1 = " + str(grads[‘dA1’]))
print("dW1 = " + str(grads[‘dW1’]))
print("dW2 = " + str(grads[‘dW2’]))
print("db1 = " + str(grads[‘db1’]))
print("db2 = " + str(grads[‘db2’]))
L_model_backward_test(L_model_backward)
len:(cache): 2
Cache is: ((array([[ 1.97611078, -1.24412333],
[-0.62641691, -0.80376609],
[-2.41908317, -0.92379202]]), array([[-1.02387576, 1.12397796, -0.13191423]]), array([[-1.62328545]])), array([[ 0.64667545, -0.35627076]]))
TypeError Traceback (most recent call last)
TypeError: float() argument must be a string or a number, not ‘tuple’
The above exception was the direct cause of the following exception:
ValueError Traceback (most recent call last)
in
1 t_AL, t_Y_assess, t_caches = L_model_backward_test_case()
----> 2 grads = L_model_backward(t_AL, t_Y_assess, t_caches)
3
4 print("dA0 = " + str(grads[‘dA0’]))
5 print("dA1 = " + str(grads[‘dA1’]))
in L_model_backward(AL, Y, caches)
50 dA_prev_temp, dW_temp, db_temp = linear_activation_backward(dAL, current_cache,“sigmoid”)
51
—> 52 grads[“dA” + str(L-1)] = np.dot(dW_temp.T, current_cache)*(1-np.power(AL ,2))
53 grads[“dW” + str(L)] = (1/m) * np.dot(current_cache,AL.T)
54 grads[“db” + str(L)] = (1/m)*np.sum(current_cache,axis = 1, keepdims = True)
<array_function internals> in dot(*args, **kwargs)
ValueError: setting an array element with a sequence.