when I use the tf version of 2.5.0
I have this problem when construct the model:
---------------------------------------------------------------------------
NotImplementedError                       Traceback (most recent call last)
<ipython-input-13-05003f69572f> in <module>()
      1 model = Sequential()
      2 model.add(Embedding(total_words, 64, input_length=max_sequence_len-1)) # 64 dimensions
----> 3 model.add(Bidirectional(LSTM(20))) # 20 units
      4 model.add(Dense(total_words, activation='softmax'))
      5 model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
25 frames
<__array_function__ internals> in prod(*args, **kwargs)
/usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/ops.py in __array__(self)
    868         "Cannot convert a symbolic Tensor ({}) to a numpy array."
    869         " This error may indicate that you're trying to pass a Tensor to"
--> 870         " a NumPy call, which is not supported".format(self.name))
    871 
    872   def __len__(self):
NotImplementedError: Cannot convert a symbolic Tensor (bidirectional_1/forward_lstm_1/strided_slice:0) to a numpy array. This error may indicate that you're trying to pass a Tensor to a NumPy call, which is not supported
when I used tf version of 2.8.0, I can pass the previous code but
I have the following problem when predict the sequence:
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-24-53a7062ef087> in <module>()
      5         token_list = tokenizer.texts_to_sequences([seed_text])[0]
      6         token_list = pad_sequences([token_list], maxlen=max_sequence_len-1, padding='pre')
----> 7         predicted = model.predict_classes(token_list, verbose=0) 
      8         output_word = ""
      9         for word, index in tokenizer.word_index.items():
AttributeError: 'Sequential' object has no attribute 'predict_classes'
How to solve this problem?
Thanks in advance.