# GRADED FUNCTION: happyModel
def happyModel():
# YOUR CODE STARTS HERE
model = tf.keras.Sequential()
## ZeroPadding2D with padding 3, input shape of 64 x 64 x 3
model.add(tf.keras.layers.ZeroPadding2D(padding=(3,3),input_shape = (64,64,3)))
## Conv2D with 32 7x7 filters and stride of 1
model.add(tf.keras.layers.Conv2D(32,(7, 7),strides=(1, 1),activation='linear', padding='valid'))
## BatchNormalization for axis 3
model.add(tf.keras.layers.BatchNormalization(axis = 3))
## ReLU
model.add(tf.keras.layers.Activation('relu'))
# Max Pooling 2D with default parameters
model.add(tf.keras.layers.MaxPooling2D((2, 2)))
## Flatten layer
model.add(tf.keras.layers.Flatten())
## Dense layer with 1 unit for output & 'sigmoid' activation
model.add(tf.keras.layers.Dense(1, activation='sigmoid'))
# YOUR CODE ENDS HERE
return model
happy_model = happyModel()
# Print a summary for each layer
for layer in summary(happy_model):
print(layer)
output = [['ZeroPadding2D', (None, 70, 70, 3), 0, ((3, 3), (3, 3))],
['Conv2D', (None, 64, 64, 32), 4736, 'valid', 'linear', 'GlorotUniform'],
['BatchNormalization', (None, 64, 64, 32), 128],
['ReLU', (None, 64, 64, 32), 0],
['MaxPooling2D', (None, 32, 32, 32), 0, (2, 2), (2, 2), 'valid'],
['Flatten', (None, 32768), 0],
['Dense', (None, 1), 32769, 'sigmoid']]
comparator(summary(happy_model), output)
['ZeroPadding2D', (None, 70, 70, 3), 0, ((3, 3), (3, 3))]
['Conv2D', (None, 64, 64, 32), 4736, 'valid', 'linear', 'GlorotUniform']
['BatchNormalization', (None, 64, 64, 32), 128]
['Activation', (None, 64, 64, 32), 0]
['MaxPooling2D', (None, 32, 32, 32), 0, (2, 2), (2, 2), 'valid']
['Flatten', (None, 32768), 0]
['Dense', (None, 1), 32769, 'sigmoid']
Test failed
Expected value
['ReLU', (None, 64, 64, 32), 0]
does not match the input value:
['Activation', (None, 64, 64, 32), 0]
---------------------------------------------------------------------------
AssertionError Traceback (most recent call last)
<ipython-input-10-f33284fd82fe> in <module>
12 ['Dense', (None, 1), 32769, 'sigmoid']]
13
---> 14 comparator(summary(happy_model), output)
~/work/release/W1A2/test_utils.py in comparator(learner, instructor)
20 "\n\n does not match the input value: \n\n",
21 colored(f"{a}", "red"))
---> 22 raise AssertionError("Error in test")
23 print(colored("All tests passed!", "green"))
24
AssertionError: Error in test
How this error could be solved please help…