Can someone help me with the model() part of this assignment I’m a bit lost
START CODE HERE
# Set the index `idx` (see instructions above)
idx = j % len(examples)
# Set the input X (see instructions above)
single_example = idx
single_example_chars = [j for j in single_example]
single_example_ix = char_to_ix[single_example_chars]
X = [None] + single_example_ix
# Set the labels Y (see instructions above)
ix_newline = [char_to_ix["\n"]]
Y = X[1:] + ix_newline
# Perform one optimization step: Forward-prop -> Backward-prop -> Clip -> Update parameters
# Choose a learning rate of 0.01
curr_loss, gradients, a_prev = optimize(X, Y, a_prev, parameters, learning_rate = 0.01)
### END CODE HERE ###