hello.
can you explain to me this problem?
how can I fix it?
dA1, dW2, db2 =linear_activation_backward(dA2, cache2,“sigmoid”)
dA0, dW1, db1 = linear_activation_backward(dA1, cache1,“relu”)
result:
ValueError Traceback (most recent call last)
in
----> 1 parameters, costs = two_layer_model(train_x, train_y, layers_dims = (n_x, n_h, n_y), num_iterations = 2, print_cost=False)
2
3 print("Cost after first iteration: " + str(costs[0]))
4
5 two_layer_model_test(two_layer_model)
in two_layer_model(X, Y, layers_dims, learning_rate, num_iterations, print_cost)
65 # dA0, dW1, db1 = …
66 # YOUR CODE STARTS HERE
—> 67 dA1, dW2, db2 =linear_activation_backward(dA2, cache2,“sigmoid”)
68 dA0, dW1, db1 = linear_activation_backward(dA1, cache1,“relu”)
69 # YOUR CODE ENDS HERE
~/work/release/W4A2/dnn_app_utils_v3.py in linear_activation_backward(dA, cache, activation)
309 db – Gradient of the cost with respect to b (current layer l), same shape as b
310 “”"
→ 311 linear_cache, activation_cache = cache
312
313 if activation == “relu”:
ValueError: too many values to unpack (expected 2)