When creating a post, please add:
- Week # must be added in the tags option of the post.
- Link to the classroom item you are referring to:
- Description (include relevant info but please do not post solution code or your entire notebook)
Deep N-grams | Coursera
Getting value error while executing
# UNGRADED CLASS: GenerativeModel
class GenerativeModel(tf.keras.Model):
Suspecting issue with passing null value , could you please help to resolve.
print(gen.generate_n_chars(32, " "), '\n\n' + '_'*80)
# UNIT TEST
# Fix the seed to get replicable results for testing
tf.random.set_seed(272)
gen = GenerativeModel(model, vocab, temperature=0.5)
print(gen.generate_n_chars(32, " "), '\n\n' + '_'*80)
print(gen.generate_n_chars(32, "Dear"), '\n\n' + '_'*80)
print(gen.generate_n_chars(32, "KING"), '\n\n' + '_'*80)
Error:
###################
ValueError Traceback (most recent call last)
Cell In[108], line 6
3 tf.random.set_seed(272)
4 gen = GenerativeModel(model, vocab, temperature=0.5)
----> 6 print(gen.generate_n_chars(32, " "), '\n\n' + '_'*80)
7 print(gen.generate_n_chars(32, "Dear"), '\n\n' + '_'*80)
8 print(gen.generate_n_chars(32, "KING"), '\n\n' + '_'*80)
Cell In[107], line 64, in GenerativeModel.generate_n_chars(self, num_chars, prefix)
62 result = [next_char]
63 for n in range(num_chars):
---> 64 next_char, states = self.generate_one_step(next_char, states=states)
65 result.append(next_char)
67 return tf.strings.join(result)[0].numpy().decode('utf-8')
File /usr/local/lib/python3.8/dist-packages/tensorflow/python/util/traceback_utils.py:153, in filter_traceback.<locals>.error_handler(*args, **kwargs)
151 except Exception as e:
152 filtered_tb = _process_traceback_frames(e.__traceback__)
--> 153 raise e.with_traceback(filtered_tb) from None
154 finally:
155 del filtered_tb
File /tmp/__autograph_generated_file87tl4msj.py:11, in outer_factory.<locals>.inner_factory.<locals>.tf__generate_one_step(self, inputs, states)
9 do_return = False
10 retval_ = ag__.UndefinedReturnValue()
---> 11 input_ids = ag__.converted_call(ag__.ld(line_to_tensor), (ag__.ld(self).inputs, ag__.ld(self).vocab), None, fscope)
12 (predicted_logits, states) = ag__.converted_call(ag__.ld(self).model, (ag__.converted_call(ag__.ld(tf).expand_dims, (ag__.ld(input_ids), 0), None, fscope),), dict(states=ag__.ld(states), return_state=True), fscope)
13 predicted_logits = ag__.ld(predicted_logits)[0, (- 1), :]
File /tmp/__autograph_generated_filen5auk7bg.py:11, in outer_factory.<locals>.inner_factory.<locals>.tf__line_to_tensor(line, vocab)
9 do_return = False
10 retval_ = ag__.UndefinedReturnValue()
---> 11 chars = ag__.converted_call(ag__.ld(tf).strings.unicode_split, (ag__.ld(line),), dict(input_encoding='UTF-8'), fscope)
12 ids = ag__.converted_call(ag__.converted_call(ag__.ld(tf).keras.layers.StringLookup, (), dict(vocabulary=ag__.converted_call(ag__.ld(list), (ag__.ld(vocab),), None, fscope), mask_token=None), fscope), (ag__.ld(chars),), None, fscope)
13 try:
ValueError: in user code:
File "/tmp/ipykernel_14/4281713250.py", line 34, in generate_one_step *
input_ids = line_to_tensor(self.inputs, self.vocab)
File "/tmp/ipykernel_14/2955566712.py", line 16, in line_to_tensor *
chars = tf.strings.unicode_split(line, input_encoding='UTF-8')
ValueError: None values not supported.