Does this help?
Performing nms for class with label 0
nms_indices this loop= [0]
nms_indices so far i.e. after append = [<tf.Tensor: shape=(1,), dtype=int64, numpy=array([0])>]
Performing nms for class with label 1
nms_indices this loop= [1]
nms_indices so far i.e. after append = [<tf.Tensor: shape=(1,), dtype=int64, numpy=array([0])>, <tf.Tensor: shape=(1,), dtype=int64, numpy=array([1])>]
end of test
Performing nms for class with label 0
nms_indices this loop= [0]
nms_indices so far i.e. after append = [<tf.Tensor: shape=(1,), dtype=int64, numpy=array([0])>]
Performing nms for class with label 1
nms_indices this loop= [1]
nms_indices so far i.e. after append = [<tf.Tensor: shape=(1,), dtype=int64, numpy=array([0])>, <tf.Tensor: shape=(1,), dtype=int64, numpy=array([1])>]
end of test
Performing nms for class with label 0
nms_indices this loop= [0]
nms_indices so far i.e. after append = [<tf.Tensor: shape=(1,), dtype=int64, numpy=array([0])>]
end of test
scores: [0.855]
boxes: [[0.45 0.2 1.01 2.6 ]]
classes: [0]
Performing nms for class with label 0
nms_indices this loop= [0 1]
nms_indices so far i.e. after append = [<tf.Tensor: shape=(2,), dtype=int64, numpy=array([0, 1])>]
end of test
Performing nms for class with label 1
nms_indices this loop= [ 0 11 18 6 47 17 9 43 36 25 8 35 27]
nms_indices so far i.e. after append = [<tf.Tensor: shape=(13,), dtype=int64, numpy=array([ 0, 11, 18, 6, 47, 17, 9, 43, 36, 25, 8, 35, 27])>]
Performing nms for class with label 2
nms_indices this loop= [19 1 40 53 29 51 12 34 42]
nms_indices so far i.e. after append = [<tf.Tensor: shape=(13,), dtype=int64, numpy=array([ 0, 11, 18, 6, 47, 17, 9, 43, 36, 25, 8, 35, 27])>, <tf.Tensor: shape=(9,), dtype=int64, numpy=array([19, 1, 40, 53, 29, 51, 12, 34, 42])>]
Performing nms for class with label 0
nms_indices this loop= [50 38 33 48 2 24 3 16 22 20 44]
nms_indices so far i.e. after append = [<tf.Tensor: shape=(13,), dtype=int64, numpy=array([ 0, 11, 18, 6, 47, 17, 9, 43, 36, 25, 8, 35, 27])>, <tf.Tensor: shape=(9,), dtype=int64, numpy=array([19, 1, 40, 53, 29, 51, 12, 34, 42])>, <tf.Tensor: shape=(11,), dtype=int64, numpy=array([50, 38, 33, 48, 2, 24, 3, 16, 22, 20, 44])>]
end of test
Performing nms for class with label 2
nms_indices this loop= [34 0 12 21 45 24 30 47 18 26 32 43 2 5 11 8 44 46]
nms_indices so far i.e. after append = [<tf.Tensor: shape=(18,), dtype=int64, numpy=
array([34, 0, 12, 21, 45, 24, 30, 47, 18, 26, 32, 43, 2, 5, 11, 8, 44,
46])>]
Performing nms for class with label 1
nms_indices this loop= [16 10 49 48 31 19 50 28 40 33 4 36 25 51 9 27 41 38 1]
nms_indices so far i.e. after append = [<tf.Tensor: shape=(18,), dtype=int64, numpy=
array([34, 0, 12, 21, 45, 24, 30, 47, 18, 26, 32, 43, 2, 5, 11, 8, 44,
46])>, <tf.Tensor: shape=(19,), dtype=int64, numpy=
array([16, 10, 49, 48, 31, 19, 50, 28, 40, 33, 4, 36, 25, 51, 9, 27, 41,
38, 1])>]
Performing nms for class with label 0
nms_indices this loop= [37 3 23 42 39 35 52 13 7 22 20 6 15 53 14 17 29]
nms_indices so far i.e. after append = [<tf.Tensor: shape=(18,), dtype=int64, numpy=
array([34, 0, 12, 21, 45, 24, 30, 47, 18, 26, 32, 43, 2, 5, 11, 8, 44,
46])>, <tf.Tensor: shape=(19,), dtype=int64, numpy=
array([16, 10, 49, 48, 31, 19, 50, 28, 40, 33, 4, 36, 25, 51, 9, 27, 41,
38, 1])>, <tf.Tensor: shape=(17,), dtype=int64, numpy=array([37, 3, 23, 42, 39, 35, 52, 13, 7, 22, 20, 6, 15, 53, 14, 17, 29])>]
end of test