Thanks for the reply. This is the code I currently have not very clear - how to implement those derivatives.
{moderator edit - solution code removed}
Output:
ValueError Traceback (most recent call last)
in
10
11 # Test conv_backward
—> 12 dA, dW, db = conv_backward(Z, cache_conv)
13
14 print(“dA_mean =”, np.mean(dA))
in conv_backward(dZ, cache)
111 # Update gradients for the window and the filter’s parameters using the code formulas given above
112 da_prev_pad[h,w, c] += np.dot(W[i,h,w,c], dZ[i, h, w, c])
→ 113 dW[i,:,:,c] += np.dot(a_slice[:,:,c], dZ[i, :,:, c])
114 db[i, h, w,c] += dZ[i, h, w, c]
115
<array_function internals> in dot(*args, **kwargs)
ValueError: shapes (2,2) and (4,4) not aligned: 2 (dim 1) != 4 (dim 0)