How should I calculate the Row echelon form?

In the video, \begin{bmatrix} 1 & 1 & 2 & 12 \\ 3 & -3 & -1 & 3 \\ 2 & -1 & 6 &24 \end{bmatrix} transform to \begin{bmatrix} 1&1&2&12\\0&-6&-7&-33\\0&0&6&18\end{bmatrix}.
https://www.coursera.org/learn/machine-learning-linear-algebra/lecture/6Rxh8/row-echelon-form-in-general

Otherwise, I calculated as this.
Matrix[1] = (Matrix[1]/3 - Matrix[0])*3 = \begin{bmatrix}1&1&2&12\\0&-6&-7&-33\\2&-1&6&24\end{bmatrix}.
Matrix[2] = (Matrix[2]/2 - Matrix[0])*2 = \begin{bmatrix}1&1&2&12\\0&-6&-7&-33\\0&-1&2&0\end{bmatrix}
Matrix[2] = (Matrix[2]/-1 - Matrix[1]/-6)*-6 = \begin{bmatrix}1&1&2&12\\0&-6&-7&-33\\0&0&19&33\end{bmatrix}

How should I calculate?

1 Like

Looks like there is a mistake in the calculation you made -

Screenshot 2023-02-08 181504

@solaris_valis

I understood.
I made a simple mistake.
I am ashamed.
Thank you.

Um hey, it’s nothing to be ashamed of.

We all are in the process of learning, right?

Happy learning…^^