Can anyone explain whats happening in this code:
X_pred_multi = np.array([[1710, 7], [1200, 6], [2200, 8]]).T
# Normalize using the same mean and standard deviation of the original training array X_multi.
X_multi_mean = np.array(np.mean(X_multi)).reshape((2,1))
X_multi_std = np.array(np.std(X_multi)).reshape((2,1))
X_pred_multi_norm = (X_pred_multi - X_multi_mean)/ X_multi_std
# Make predictions.
Y_pred_multi_norm = np.matmul(W_multi, X_pred_multi_norm) + b_multi
# Denormalize using the same mean and standard deviation of the original training array Y_multi.
Y_pred_multi = Y_pred_multi_norm * np.std(Y_multi) + np.mean(Y_multi)
print(f"Ground living area, square feet:\n{X_pred_multi[0]}")
print(f"Rates of the overall quality of material and finish, 1-10:\n{X_pred_multi[1]}")
print(f"Predictions of sales price, $:\n{np.round(Y_pred_multi)}")
Why did we take new array of X_pred_multi