I don’t know where its going wrong …
Any help is appreciated
the error states:-
----> 1 assert type(loss_function) == tf.python.keras.losses.BinaryCrossentropy, “Not the correct layer”
2 assert loss_function.from_logits, “Use from_logits=True”
3 assert type(optimizer) == tf.keras.optimizers.Adam, “This is not an Adam optimizer”
4 assert optimizer.lr == base_learning_rate / 10, “Wrong learning rate”
5 assert metrics[0] == ‘accuracy’, “Wrong metric”
AssertionError: Not the correct layer
this is my code:
for layer in base_model.layers[:fine_tune_at]:
layer.trainable = False
Define a BinaryCrossentropy loss function. Use from_logits=True
loss_function=True
Define an Adam optimizer with a learning rate of 0.1 * base_learning_rate
optimizer = tf.keras.optimizers.Adam(learning_rate=0.1 * base_learning_rate)
Use accuracy as evaluation metric
metrics=‘accuracy’